Skip to content

atomicits/ML-Resources

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 

Repository files navigation

ML Algorithms:

Here's a comprehensive list of common machine learning algorithms, organized by category:

Supervised Learning:

Regression Algorithms:

  • Linear Regression
    • Simple Linear Regression
    • Multiple Linear Regression
    • Polynomial Regression
  • Ridge Regression
  • Lasso Regression
  • Elastic Net
  • Support Vector Regression (SVR)
  • Decision Tree Regression
  • Random Forest Regression
  • Gradient Boosting Regression (e.g., XGBoost, LightGBM)
  • K-Nearest Neighbors (KNN) Regression
  • Bayesian Regression

Classification Algorithms:

  • Logistic Regression
  • Naive Bayes
    • Gaussian Naive Bayes
    • Multinomial Naive Bayes
    • Bernoulli Naive Bayes
  • Support Vector Machines (SVM)
  • K-Nearest Neighbors (KNN)
  • Decision Tree
  • Random Forest
  • Gradient Boosting Classifiers (e.g., AdaBoost, XGBoost, LightGBM)
  • Neural Networks
    • Perceptron
    • Multilayer Perceptron (MLP)
  • Linear Discriminant Analysis (LDA)
  • Quadratic Discriminant Analysis (QDA)
  • Ensemble Methods
    • Bagging
    • Boosting
    • Stacking

Unsupervised Learning:

Clustering Algorithms:

  • K-Means
  • Hierarchical Clustering
    • Agglomerative
    • Divisive
  • DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
  • Gaussian Mixture Models (GMM)
  • Mean Shift
  • OPTICS (Ordering Points To Identify the Clustering Structure)

Dimensionality Reduction:

  • Principal Component Analysis (PCA)
  • t-SNE (t-Distributed Stochastic Neighbor Embedding)
  • Linear Discriminant Analysis (LDA)
  • Independent Component Analysis (ICA)
  • Autoencoders

Association Rule Learning:

  • Apriori
  • Eclat

Semi-Supervised Learning:

  • Self-Training
  • Co-Training
  • Transductive SVM

Reinforcement Learning:

  • Q-Learning
  • SARSA
  • Deep Q-Network (DQN)
  • Policy Gradient Methods
    • REINFORCE
    • Actor-Critic
  • Monte Carlo Tree Search

Deep Learning Algorithms:

  • Convolutional Neural Networks (CNN)
  • Recurrent Neural Networks (RNN)
    • Long Short-Term Memory (LSTM)
    • Gated Recurrent Unit (GRU)
  • Autoencoders
  • Generative Adversarial Networks (GANs)
  • Transformers

Other Techniques:

  • Ensemble Methods
    • Voting Classifiers
    • Stacking
  • Feature Selection Algorithms
  • Anomaly Detection
    • Isolation Forest
    • One-class SVM

Resources to learn Machine Learning

  1. https://www.kaggle.com/
  2. https://resources.nvidia.com/en-us-event-slides/free-courses
  3. https://www.geeksforgeeks.org/machine-learning/

ML Projects for Beginners

  1. https://www.geeksforgeeks.org/machine-learning-projects/
  2. https://data-flair.training/blogs/machine-learning-project-ideas/

About

Machine learning Resources

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published