-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathaim_mt_2d_agent.py
200 lines (156 loc) · 5.59 KB
/
aim_mt_2d_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import json
import datetime
import pathlib
import time
import cv2
import carla
from collections import deque
import torch
import numpy as np
from PIL import Image
from leaderboard.autoagents import autonomous_agent
from aim_mt_2d.architectures import MultiTaskImageNetwork
from aim_mt_2d.config import GlobalConfig
from aim_mt_2d.data import scale_and_crop_image
from team_code.planner import RoutePlanner
SAVE_PATH = os.environ.get('SAVE_PATH', None)
def get_entry_point():
return 'MultiTaskAgent'
class MultiTaskAgent(autonomous_agent.AutonomousAgent):
def setup(self, path_to_conf_file):
self.track = autonomous_agent.Track.SENSORS
self.config_path = path_to_conf_file
self.step = -1
self.wall_start = time.time()
self.initialized = False
self.input_buffer = {'rgb': deque(), 'rgb_front': deque(), 'gps': deque(), 'thetas': deque()}
self.config = GlobalConfig()
self.net = MultiTaskImageNetwork(self.config, 'cuda')
self.net.load_state_dict(torch.load(os.path.join(path_to_conf_file, 'best_model.pth')))
self.net.cuda()
self.net.eval()
self.save_path = None
if SAVE_PATH is not None:
now = datetime.datetime.now()
string = pathlib.Path(os.environ['ROUTES']).stem + '_'
string += '_'.join(map(lambda x: '%02d' % x, (now.month, now.day, now.hour, now.minute, now.second)))
print (string)
self.save_path = pathlib.Path(os.environ['SAVE_PATH']) / string
self.save_path.mkdir(parents=True, exist_ok=False)
(self.save_path / 'rgb').mkdir()
(self.save_path / 'meta').mkdir()
def _init(self):
self._route_planner = RoutePlanner(4.0, 50.0)
self._route_planner.set_route(self._global_plan, True)
self.initialized = True
def _get_position(self, tick_data):
gps = tick_data['gps']
gps = (gps - self._route_planner.mean) * self._route_planner.scale
return gps
def sensors(self):
return [
{
'type': 'sensor.camera.rgb',
'x': 1.3, 'y': 0.0, 'z':2.3,
'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0,
'width': 400, 'height': 300, 'fov': 100,
'id': 'rgb'
},
{
'type': 'sensor.camera.rgb',
'x': 1.3, 'y': 0.0, 'z':2.3,
'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0,
'width': 800, 'height': 600, 'fov': 100,
'id': 'rgb_front'
},
{
'type': 'sensor.other.imu',
'x': 0.0, 'y': 0.0, 'z': 0.0,
'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0,
'sensor_tick': 0.05,
'id': 'imu'
},
{
'type': 'sensor.other.gnss',
'x': 0.0, 'y': 0.0, 'z': 0.0,
'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0,
'sensor_tick': 0.01,
'id': 'gps'
},
{
'type': 'sensor.speedometer',
'reading_frequency': 20,
'id': 'speed'
}
]
def tick(self, input_data):
self.step += 1
rgb = cv2.cvtColor(input_data['rgb'][1][:, :, :3], cv2.COLOR_BGR2RGB)
rgb_front = cv2.cvtColor(input_data['rgb_front'][1][:, :, :3], cv2.COLOR_BGR2RGB)
gps = input_data['gps'][1][:2]
speed = input_data['speed'][1]['speed']
compass = input_data['imu'][1][-1]
result = {
'rgb': rgb,
'rgb_front': rgb_front,
'gps': gps,
'speed': speed,
'compass': compass,
}
pos = self._get_position(result)
result['gps'] = pos
next_wp, next_cmd = self._route_planner.run_step(pos)
result['next_command'] = next_cmd.value
theta = compass + np.pi/2
R = np.array([
[np.cos(theta), -np.sin(theta)],
[np.sin(theta), np.cos(theta)]
])
local_command_point = np.array([next_wp[0]-pos[0], next_wp[1]-pos[1]])
local_command_point = R.T.dot(local_command_point)
result['target_point'] = tuple(local_command_point)
return result
@torch.no_grad()
def run_step(self, input_data, timestamp):
if not self.initialized:
self._init()
tick_data = self.tick(input_data)
if self.step < self.config.seq_len:
rgb = torch.from_numpy(scale_and_crop_image(Image.fromarray(tick_data['rgb']), scale=self.config.scale, crop=self.config.input_resolution)).unsqueeze(0)
self.input_buffer['rgb'].append(rgb.to('cuda', dtype=torch.float32))
control = carla.VehicleControl()
control.steer = 0.0
control.throttle = 0.0
control.brake = 0.0
return control
gt_velocity = torch.FloatTensor([tick_data['speed']]).to('cuda', dtype=torch.float32)
command = torch.FloatTensor([tick_data['next_command']]).to('cuda', dtype=torch.float32)
tick_data['target_point'] = [torch.FloatTensor([tick_data['target_point'][0]]),
torch.FloatTensor([tick_data['target_point'][1]])]
target_point = torch.stack(tick_data['target_point'], dim=1).to('cuda', dtype=torch.float32)
encoding = []
rgb = torch.from_numpy(scale_and_crop_image(Image.fromarray(tick_data['rgb']), scale=self.config.scale, crop=self.config.input_resolution)).unsqueeze(0)
self.input_buffer['rgb'].popleft()
self.input_buffer['rgb'].append(rgb.to('cuda', dtype=torch.float32))
encoding.append(self.net.image_encoder(list(self.input_buffer['rgb']))[0])
pred_wp = self.net(encoding, target_point)
steer, throttle, brake, metadata = self.net.control_pid(pred_wp, gt_velocity)
self.pid_metadata = metadata
if brake < 0.05: brake = 0.0
if throttle > brake: brake = 0.0
control = carla.VehicleControl()
control.steer = float(steer)
control.throttle = float(throttle)
control.brake = float(brake)
if SAVE_PATH is not None and self.step % 10 == 0:
self.save(tick_data)
return control
def save(self, tick_data):
frame = self.step // 10
Image.fromarray(tick_data['rgb_front']).save(self.save_path / 'rgb' / ('%04d.png' % frame))
outfile = open(self.save_path / 'meta' / ('%04d.json' % frame), 'w')
json.dump(self.pid_metadata, outfile, indent=4)
outfile.close()
def destroy(self):
del self.net