Releases
v2.0.0
Breaking Changes
rename s3_input to TrainingInput
Move _NumpyDeserializer to sagemaker.deserializers.NumpyDeserializer
rename numpy_to_record_serializer to RecordSerializer
Move _CsvDeserializer to sagemaker.deserializers and rename to CSVDeserializer
Move _JsonSerializer to sagemaker.serializers.JSONSerializer
Move _NPYSerializer to sagemaker.serializers and rename to NumpySerializer
Move _JsonDeserializer to sagemaker.deserializers.JSONDeserializer
Move _CsvSerializer to sagemaker.serializers.CSVSerializer
preserve script path when S3 source_dir is provided
use image_uris.retrieve() for XGBoost URIs
deprecate sagemaker.amazon.amazon_estimator.get_image_uri()
deprecate fw_registry module and use image_uris.retrieve() for SparkML
deprecate Python SDK CLI
Remove the content_types module
deprecate unused parameters
deprecate fw_utils.create_image_uri()
use images_uris.retrieve() for Debugger
deprecate fw_utils.parse_s3_url in favor of s3.parse_s3_url
deprecate unused functions from utils and fw_utils
Remove content_type and accept parameters from Predictor
Add parameters to deploy and remove parameters from create_model
Add LibSVM serializer for XGBoost predictor
move ShuffleConfig from sagemaker.session to sagemaker.inputs
deprecate get_ecr_image_uri_prefix
rename estimator.train_image() to estimator.training_image_uri()
deprecate is_version_equal_or_higher and is_version_equal_or_lower
default wait=True for HyperparameterTuner.fit() and Transformer.transform()
remove unused bin/sagemaker-submit file
Features
start new module for retrieving prebuilt SageMaker image URIs
handle separate training/inference images and EI in image_uris.retrieve
add support for Amazon algorithms in image_uris.retrieve()
Add pandas deserializer
Remove LegacySerializer and LegacyDeserializer
Add sparse matrix serializer
Add v2 SerDe compatability
Add JSON Lines serializer
add framework upgrade tool
add 1p algorithm image_uris migration tool
Update migration tool to support breaking changes to create_model
support PyTorch 1.6 training
Bug Fixes and Other Changes
handle named variables in v2 migration tool
add modifier for s3_input class
add XGBoost support to image_uris.retrieve()
add MXNet configuration to image_uris.retrieve()
add remaining Amazon algorithms for image_uris.retrieve()
add PyTorch configuration for image_uris.retrieve()
make image_scope optional for some images in image_uris.retrieve()
separate logs() from attach()
use image_uris.retrieve instead of fw_utils.create_image_uri for DLC frameworks
use images_uris.retrieve() for scikit-learn classes
use image_uris.retrieve() for RL images
Rename BaseDeserializer.deserialize data parameter
Add allow_pickle parameter to NumpyDeserializer
Fix scipy.sparse imports
Improve code style of SerDe compatibility
use image_uris.retrieve for Neo and Inferentia images
use generated RL version fixtures and update Ray version
use image_uris.retrieve() for ModelMonitor default image
use _framework_name for 'protected' attribute
Fix JSONLinesDeserializer
upgrade TFS version and fix py_versions KeyError
Fix PandasDeserializer tests to more accurately mock response
don't require instance_type for image_uris.retrieve() if only one option
ignore code cells with shell commands in v2 migration tool
Support multiple Accept types
Documentation Changes
fix pip install command
document name changes for TFS classes
document v2.0.0 changes
update KFP full pipeline
Testing and Release Infrastructure
generate Chainer latest version fixtures from config
use generated TensorFlow version fixtures
use generated MXNet version fixtures
You can’t perform that action at this time.