Skip to content

Latest commit

 

History

History
70 lines (46 loc) · 1.94 KB

README.md

File metadata and controls

70 lines (46 loc) · 1.94 KB

yolov5

Input

Input

(Image from https://pixabay.com/ja/photos/%E3%83%AD%E3%83%B3%E3%83%89%E3%83%B3%E5%B8%82-%E9%8A%80%E8%A1%8C-%E3%83%AD%E3%83%B3%E3%83%89%E3%83%B3-4481399/)

Shape : (1, 3, 640, 640)
Range : [0.0, 1.0] Color : RGB

Output

Output

usage

Automatically downloads the onnx and prototxt files on the first run. It is necessary to be connected to the Internet while downloading.

For the sample image,

$ python3 yolov5.py

If you want to specify the input image, put the image path after the --input option.
You can use --savepath option to change the name of the output file to save.

$ python3 yolov5.py --input IMAGE_PATH --savepath SAVE_IMAGE_PATH

By adding the --video option, you can input the video.
If you pass 0 as an argument to VIDEO_PATH, you can use the webcam input instead of the video file.

$ python3 yolov5.py --video VIDEO_PATH

You can use --arch option to change the model architecture.

$ python3 yolov5.py --arch yolov5m

You can use --detection_width and --detection_height options to change the detection resolution

$ python3 yolov5.py --detection_width 1280 --detection_height 640

Reference

Framework

Pytorch

Model Format

ONNX opset=11

Netron

yolov5s.onnx.prototxt

yolov5m.onnx.prototxt

yolov5l.onnx.prototxt

yolov5x.onnx.prototxt

yolov5s6.onnx.prototxt