Skip to content

ultralytics/yolov5

Ultralytics YOLO banner

δΈ­ζ–‡ | ν•œκ΅­μ–΄ | ζ—₯本θͺž | Русский | Deutsch | FranΓ§ais | EspaΓ±ol | PortuguΓͺs | TΓΌrkΓ§e | TiαΊΏng Việt | Ψ§Ω„ΨΉΨ±Ψ¨ΩŠΨ©

YOLOv5 CI Testing YOLOv5 Citation Docker Pulls Discord Ultralytics Forums Ultralytics Reddit
Run on Gradient Open In Colab Open In Kaggle

Ultralytics YOLOv5 πŸš€ is a cutting-edge, state-of-the-art (SOTA) computer vision model developed by Ultralytics. Based on the PyTorch framework, YOLOv5 is renowned for its ease of use, speed, and accuracy. It incorporates insights and best practices from extensive research and development, making it a popular choice for a wide range of vision AI tasks, including object detection, image segmentation, and image classification.

We hope the resources here help you get the most out of YOLOv5. Please browse the YOLOv5 Docs for detailed information, raise an issue on GitHub for support, and join our Discord community for questions and discussions!

To request an Enterprise License, please complete the form at Ultralytics Licensing.

Ultralytics GitHub Ultralytics LinkedIn Ultralytics Twitter Ultralytics YouTube Ultralytics TikTok Ultralytics BiliBili Ultralytics Discord

πŸš€ YOLO11: The Next Evolution

We are excited to announce the launch of Ultralytics YOLO11 πŸš€, the latest advancement in our state-of-the-art (SOTA) vision models! Available now at the Ultralytics YOLO GitHub repository, YOLO11 builds on our legacy of speed, precision, and ease of use. Whether you're tackling object detection, instance segmentation, pose estimation, image classification, or oriented object detection (OBB), YOLO11 delivers the performance and versatility needed to excel in diverse applications.

Get started today and unlock the full potential of YOLO11! Visit the Ultralytics Docs for comprehensive guides and resources:

PyPI version Downloads

# Install the ultralytics package
pip install ultralytics

πŸ“š Documentation

See the YOLOv5 Docs for full documentation on training, testing, and deployment. See below for quickstart examples.

Install

Clone the repository and install dependencies from requirements.txt in a Python>=3.8.0 environment. Ensure you have PyTorch>=1.8 installed.

# Clone the YOLOv5 repository
git clone https://github.com/ultralytics/yolov5

# Navigate to the cloned directory
cd yolov5

# Install required packages
pip install -r requirements.txt
Inference with PyTorch Hub

Use YOLOv5 via PyTorch Hub for inference. Models are automatically downloaded from the latest YOLOv5 release.

import torch

# Load a YOLOv5 model (options: yolov5n, yolov5s, yolov5m, yolov5l, yolov5x)
model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # Default: yolov5s

# Define the input image source (URL, local file, PIL image, OpenCV frame, numpy array, or list)
img = "https://ultralytics.com/images/zidane.jpg"  # Example image

# Perform inference (handles batching, resizing, normalization automatically)
results = model(img)

# Process the results (options: .print(), .show(), .save(), .crop(), .pandas())
results.print()  # Print results to console
results.show()  # Display results in a window
results.save()  # Save results to runs/detect/exp
Inference with detect.py

The detect.py script runs inference on various sources. It automatically downloads models from the latest YOLOv5 release and saves the results to the runs/detect directory.

# Run inference using a webcam
python detect.py --weights yolov5s.pt --source 0

# Run inference on a local image file
python detect.py --weights yolov5s.pt --source img.jpg

# Run inference on a local video file
python detect.py --weights yolov5s.pt --source vid.mp4

# Run inference on a screen capture
python detect.py --weights yolov5s.pt --source screen

# Run inference on a directory of images
python detect.py --weights yolov5s.pt --source path/to/images/

# Run inference on a text file listing image paths
python detect.py --weights yolov5s.pt --source list.txt

# Run inference on a text file listing stream URLs
python detect.py --weights yolov5s.pt --source list.streams

# Run inference using a glob pattern for images
python detect.py --weights yolov5s.pt --source 'path/to/*.jpg'

# Run inference on a YouTube video URL
python detect.py --weights yolov5s.pt --source 'https://youtu.be/LNwODJXcvt4'

# Run inference on an RTSP, RTMP, or HTTP stream
python detect.py --weights yolov5s.pt --source 'rtsp://example.com/media.mp4'
Training

The commands below demonstrate how to reproduce YOLOv5 COCO dataset results. Both models and datasets are downloaded automatically from the latest YOLOv5 release. Training times for YOLOv5n/s/m/l/x are approximately 1/2/4/6/8 days on a single V100 GPU. Using Multi-GPU training can significantly reduce training time. Use the largest --batch-size your hardware allows, or use --batch-size -1 for YOLOv5 AutoBatch. The batch sizes shown below are for V100-16GB GPUs.

# Train YOLOv5n on COCO for 300 epochs
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128

# Train YOLOv5s on COCO for 300 epochs
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5s.yaml --batch-size 64

# Train YOLOv5m on COCO for 300 epochs
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5m.yaml --batch-size 40

# Train YOLOv5l on COCO for 300 epochs
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5l.yaml --batch-size 24

# Train YOLOv5x on COCO for 300 epochs
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5x.yaml --batch-size 16
YOLOv5 Training Results
Tutorials

πŸ› οΈ Integrations

Explore Ultralytics' key integrations with leading AI platforms. These collaborations enhance capabilities for dataset labeling, training, visualization, and model management. Discover how Ultralytics works with Weights & Biases (W&B), Comet ML, Roboflow, and Intel OpenVINO to optimize your AI workflows.


Ultralytics Active Learning Integrations Banner

Ultralytics HUB πŸš€ W&B Comet ⭐ NEW Neural Magic
Streamline YOLO workflows: Label, train, and deploy effortlessly with Ultralytics HUB. Try now! Track experiments, hyperparameters, and results seamlessly with Weights & Biases. Free forever, Comet lets you save YOLOv5 models, resume training, and interactively visualize and debug predictions. Run YOLOv5 inference up to 6x faster on CPUs with Neural Magic DeepSparse.

⭐ Ultralytics HUB

Experience seamless AI development with Ultralytics HUB ⭐, the ultimate platform for building, training, and deploying computer vision models. Visualize datasets, train YOLOv5 and YOLOv8 πŸš€ models, and deploy them to real-world applications without writing any code. Transform images into actionable insights using our cutting-edge tools and user-friendly Ultralytics App. Start your journey for Free today!

Ultralytics HUB Platform Screenshot

πŸ€” Why YOLOv5?

YOLOv5 is designed for simplicity and ease of use. We prioritize real-world performance and accessibility.

YOLOv5 Performance Chart

YOLOv5-P5 640 Figure

YOLOv5 P5 640 Performance Chart

Figure Notes
  • COCO AP val denotes the mean Average Precision (mAP) at IoU thresholds from 0.5 to 0.95, measured on the 5,000-image COCO val2017 dataset across various inference sizes (256 to 1536 pixels).
  • GPU Speed measures the average inference time per image on the COCO val2017 dataset using an AWS p3.2xlarge V100 instance with a batch size of 32.
  • EfficientDet data is sourced from the google/automl repository at batch size 8.
  • Reproduce these results using the command: python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt

Pretrained Checkpoints

This table shows the performance metrics for various YOLOv5 models trained on the COCO dataset.

Model Size
(pixels)
mAPval
50-95
mAPval
50
Speed
CPU b1
(ms)
Speed
V100 b1
(ms)
Speed
V100 b32
(ms)
Params
(M)
FLOPs
@640 (B)
YOLOv5n 640 28.0 45.7 45 6.3 0.6 1.9 4.5
YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5
YOLOv5m 640 45.4 64.1 224 8.2 1.7 21.2 49.0
YOLOv5l 640 49.0 67.3 430 10.1 2.7 46.5 109.1
YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7
YOLOv5n6 1280 36.0 54.4 153 8.1 2.1 3.2 4.6
YOLOv5s6 1280 44.8 63.7 385 8.2 3.6 12.6 16.8
YOLOv5m6 1280 51.3 69.3 887 11.1 6.8 35.7 50.0
YOLOv5l6 1280 53.7 71.3 1784 15.8 10.5 76.8 111.4
YOLOv5x6
+ [[TTA]][tta]
1280
1536
55.0
55.8
72.7
72.7
3136
-
26.2
-
19.4
-
140.7
-
209.8
-
Table Notes
  • All checkpoints were trained for 300 epochs using default settings. Nano (n) and Small (s) models use hyp.scratch-low.yaml hyperparameters, while Medium (m), Large (l), and Extra-Large (x) models use hyp.scratch-high.yaml.
  • mAPval values represent single-model, single-scale performance on the COCO val2017 dataset.
    Reproduce using: python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
  • Speed metrics are averaged over COCO val images using an AWS p3.2xlarge V100 instance. Non-Maximum Suppression (NMS) time (~1 ms/image) is not included.
    Reproduce using: python val.py --data coco.yaml --img 640 --task speed --batch 1
  • TTA (Test Time Augmentation) includes reflection and scale augmentations for improved accuracy.
    Reproduce using: python val.py --data coco.yaml --img 1536 --iou 0.7 --augment

πŸ–ΌοΈ Segmentation

The YOLOv5 release v7.0 introduced instance segmentation models that achieve state-of-the-art performance. These models are designed for easy training, validation, and deployment. For full details, see the Release Notes and explore the YOLOv5 Segmentation Colab Notebook for quickstart examples.

Segmentation Checkpoints

YOLOv5 segmentation models were trained on the COCO dataset for 300 epochs at an image size of 640 pixels using A100 GPUs. Models were exported to ONNX FP32 for CPU speed tests and TensorRT FP16 for GPU speed tests. All speed tests were conducted on Google Colab Pro notebooks for reproducibility.

Model Size
(pixels)
mAPbox
50-95
mAPmask
50-95
Train Time
300 epochs
A100 (hours)
Speed
ONNX CPU
(ms)
Speed
TRT A100
(ms)
Params
(M)
FLOPs
@640 (B)
YOLOv5n-seg 640 27.6 23.4 80:17 62.7 1.2 2.0 7.1
YOLOv5s-seg 640 37.6 31.7 88:16 173.3 1.4 7.6 26.4
YOLOv5m-seg 640 45.0 37.1 108:36 427.0 2.2 22.0 70.8
YOLOv5l-seg 640 49.0 39.9 66:43 (2x) 857.4 2.9 47.9 147.7
YOLOv5x-seg 640 50.7 41.4 62:56 (3x) 1579.2 4.5 88.8 265.7
  • All checkpoints were trained for 300 epochs using the SGD optimizer with lr0=0.01 and weight_decay=5e-5 at an image size of 640 pixels, using default settings.
    Training runs are logged at https://wandb.ai/glenn-jocher/YOLOv5_v70_official.
  • Accuracy values represent single-model, single-scale performance on the COCO dataset.
    Reproduce using: python segment/val.py --data coco.yaml --weights yolov5s-seg.pt
  • Speed metrics are averaged over 100 inference images using a Colab Pro A100 High-RAM instance. Values indicate inference speed only (NMS adds approximately 1ms per image).
    Reproduce using: python segment/val.py --data coco.yaml --weights yolov5s-seg.pt --batch 1
  • Export to ONNX (FP32) and TensorRT (FP16) was performed using export.py.
    Reproduce using: python export.py --weights yolov5s-seg.pt --include engine --device 0 --half
Segmentation Usage Examples Β Open In Colab

Train

YOLOv5 segmentation training supports automatic download of the COCO128-seg dataset via the --data coco128-seg.yaml argument. For the full COCO-segments dataset, download it manually using bash data/scripts/get_coco.sh --train --val --segments and then train with python train.py --data coco.yaml.

# Train on a single GPU
python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640

# Train using Multi-GPU Distributed Data Parallel (DDP)
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3

Val

Validate the mask mean Average Precision (mAP) of YOLOv5s-seg on the COCO dataset:

# Download COCO validation segments split (780MB, 5000 images)
bash data/scripts/get_coco.sh --val --segments

# Validate the model
python segment/val.py --weights yolov5s-seg.pt --data coco.yaml --img 640

Predict

Use the pretrained YOLOv5m-seg.pt model to perform segmentation on bus.jpg:

# Run prediction
python segment/predict.py --weights yolov5m-seg.pt --source data/images/bus.jpg
# Load model from PyTorch Hub (Note: Inference support might vary)
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5m-seg.pt")
Zidane Segmentation Example Bus Segmentation Example

Export

Export the YOLOv5s-seg model to ONNX and TensorRT formats:

# Export model
python export.py --weights yolov5s-seg.pt --include onnx engine --img 640 --device 0

🏷️ Classification

YOLOv5 release v6.2 introduced support for image classification model training, validation, and deployment. Check the Release Notes for details and the YOLOv5 Classification Colab Notebook for quickstart guides.

Classification Checkpoints

YOLOv5-cls classification models were trained on ImageNet for 90 epochs using a 4xA100 instance. ResNet and EfficientNet models were trained alongside under identical settings for comparison. Models were exported to ONNX FP32 (CPU speed tests) and TensorRT FP16 (GPU speed tests). All speed tests were run on Google Colab Pro for reproducibility.

Model Size
(pixels)
Acc
top1
Acc
top5
Training
90 epochs
4xA100 (hours)
Speed
ONNX CPU
(ms)
Speed
TensorRT V100
(ms)
Params
(M)
FLOPs
@224 (B)
YOLOv5n-cls 224 64.6 85.4 7:59 3.3 0.5 2.5 0.5
YOLOv5s-cls 224 71.5 90.2 8:09 6.6 0.6 5.4 1.4
YOLOv5m-cls 224 75.9 92.9 10:06 15.5 0.9 12.9 3.9
YOLOv5l-cls 224 78.0 94.0 11:56 26.9 1.4 26.5 8.5
YOLOv5x-cls 224 79.0 94.4 15:04 54.3 1.8 48.1 15.9
ResNet18 224 70.3 89.5 6:47 11.2 0.5 11.7 3.7
ResNet34 224 73.9 91.8 8:33 20.6 0.9 21.8 7.4
ResNet50 224 76.8 93.4 11:10 23.4 1.0 25.6 8.5
ResNet101 224 78.5 94.3 17:10 42.1 1.9 44.5 15.9
EfficientNet_b0 224 75.1 92.4 13:03 12.5 1.3 5.3 1.0
EfficientNet_b1 224 76.4 93.2 17:04 14.9 1.6 7.8 1.5
EfficientNet_b2 224 76.6 93.4 17:10 15.9 1.6 9.1 1.7
EfficientNet_b3 224 77.7 94.0 19:19 18.9 1.9 12.2 2.4
Table Notes (click to expand)
  • All checkpoints were trained for 90 epochs using the SGD optimizer with lr0=0.001 and weight_decay=5e-5 at an image size of 224 pixels, using default settings.
    Training runs are logged at https://wandb.ai/glenn-jocher/YOLOv5-Classifier-v6-2.
  • Accuracy values (top-1 and top-5) represent single-model, single-scale performance on the ImageNet-1k dataset.
    Reproduce using: python classify/val.py --data ../datasets/imagenet --img 224
  • Speed metrics are averaged over 100 inference images using a Google Colab Pro V100 High-RAM instance.
    Reproduce using: python classify/val.py --data ../datasets/imagenet --img 224 --batch 1
  • Export to ONNX (FP32) and TensorRT (FP16) was performed using export.py.
    Reproduce using: python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224
Classification Usage Examples Β Open In Colab

Train

YOLOv5 classification training supports automatic download for datasets like MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet using the --data argument. For example, start training on MNIST with --data mnist.

# Train on a single GPU using CIFAR-100 dataset
python classify/train.py --model yolov5s-cls.pt --data cifar100 --epochs 5 --img 224 --batch 128

# Train using Multi-GPU DDP on ImageNet dataset
python -m torch.distributed.run --nproc_per_node 4 --master_port 1 classify/train.py --model yolov5s-cls.pt --data imagenet --epochs 5 --img 224 --device 0,1,2,3

Val

Validate the accuracy of the YOLOv5m-cls model on the ImageNet-1k validation dataset:

# Download ImageNet validation split (6.3GB, 50,000 images)
bash data/scripts/get_imagenet.sh --val

# Validate the model
python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224

Predict

Use the pretrained YOLOv5s-cls.pt model to classify the image bus.jpg:

# Run prediction
python classify/predict.py --weights yolov5s-cls.pt --source data/images/bus.jpg
# Load model from PyTorch Hub
model = torch.hub.load("ultralytics/yolov5", "custom", "yolov5s-cls.pt")

Export

Export trained YOLOv5s-cls, ResNet50, and EfficientNet_b0 models to ONNX and TensorRT formats:

# Export models
python export.py --weights yolov5s-cls.pt resnet50.pt efficientnet_b0.pt --include onnx engine --img 224

☁️ Environments

Get started quickly with our pre-configured environments. Click the icons below for setup details.

🀝 Contribute

We welcome your contributions! Making YOLOv5 accessible and effective is a community effort. Please see our Contributing Guide to get started. Share your feedback through the YOLOv5 Survey. Thank you to all our contributors for making YOLOv5 better!

Ultralytics open-source contributors

πŸ“œ License

Ultralytics provides two licensing options to meet different needs:

  • AGPL-3.0 License: An OSI-approved open-source license ideal for academic research, personal projects, and testing. It promotes open collaboration and knowledge sharing. See the LICENSE file for details.
  • Enterprise License: Tailored for commercial applications, this license allows seamless integration of Ultralytics software and AI models into commercial products and services, bypassing the open-source requirements of AGPL-3.0. For commercial use cases, please contact us via Ultralytics Licensing.

πŸ“§ Contact

For bug reports and feature requests related to YOLOv5, please visit GitHub Issues. For general questions, discussions, and community support, join our Discord server!


Ultralytics GitHub Ultralytics LinkedIn Ultralytics Twitter Ultralytics YouTube Ultralytics TikTok Ultralytics BiliBili Ultralytics Discord