-
Notifications
You must be signed in to change notification settings - Fork 802
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1193 from borglab/fix/ellipses
- Loading branch information
Showing
3 changed files
with
218 additions
and
38 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -18,3 +18,4 @@ | |
CMakeLists.txt.user* | ||
xcode/ | ||
/Dockerfile | ||
/python/gtsam/notebooks/.ipynb_checkpoints/ellipses-checkpoint.ipynb |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Ellipse Scaling\n", | ||
"\n", | ||
"The code to calculate the percentages included in ellipses with various values of \"k\" in `plot.py`.\n", | ||
"\n", | ||
"Thanks to @senselessDev, January 26, for providing the code in [PR #1067](https://github.com/borglab/gtsam/pull/1067)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import scipy\n", | ||
"import scipy.stats\n", | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def pct_to_sigma(pct, dof):\n", | ||
" return np.sqrt(scipy.stats.chi2.ppf(pct / 100., df=dof))\n", | ||
"\n", | ||
"def sigma_to_pct(sigma, dof):\n", | ||
" return scipy.stats.chi2.cdf(sigma**2, df=dof) * 100." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"0D\t 1 \t 2 \t 3 \t 4 \t 5 \n", | ||
"1D\t68.26895%\t95.44997%\t99.73002%\t99.99367%\t99.99994%\n", | ||
"2D\t39.34693%\t86.46647%\t98.88910%\t99.96645%\t99.99963%\n", | ||
"3D\t19.87480%\t73.85359%\t97.07091%\t99.88660%\t99.99846%\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"for dof in range(0, 4):\n", | ||
" print(\"{}D\".format(dof), end=\"\")\n", | ||
" for sigma in range(1, 6):\n", | ||
" if dof == 0: print(\"\\t {} \".format(sigma), end=\"\")\n", | ||
" else: print(\"\\t{:.5f}%\".format(sigma_to_pct(sigma, dof)), end=\"\")\n", | ||
" print()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"1D\n", | ||
"\n", | ||
"pct=50.0 -> sigma=0.674489750196\n", | ||
"pct=95.0 -> sigma=1.959963984540\n", | ||
"pct=99.0 -> sigma=2.575829303549\n", | ||
"\n", | ||
"2D\n", | ||
"\n", | ||
"pct=50.0 -> sigma=1.177410022515\n", | ||
"pct=95.0 -> sigma=2.447746830681\n", | ||
"pct=99.0 -> sigma=3.034854258770\n", | ||
"\n", | ||
"3D\n", | ||
"\n", | ||
"pct=50.0 -> sigma=1.538172254455\n", | ||
"pct=95.0 -> sigma=2.795483482915\n", | ||
"pct=99.0 -> sigma=3.368214175219\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"for dof in range(1, 4):\n", | ||
" print(\"{}D\\n\".format(dof))\n", | ||
" for pct in [50, 95, 99]:\n", | ||
" print(\"pct={:.1f} -> sigma={:.12f}\".format(pct, pct_to_sigma(pct, dof)))\n", | ||
" print()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"interpreter": { | ||
"hash": "4d608302ba82e7596903db5446e6fa05f049271852e8cc6e1cafaafe5fbd9fed" | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3.8.13 ('gtsfm-v1')", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.13" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters