Dataset proposed in "Pose2UV: Single-shot Multi-person Mesh Recovery with Deep UV Prior"
[ProjectPage] [paper] @ TIP2022.
3DMPB is a multi-person dataset in the outdoor sport field with human interaction occlusion and image truncation. This dataset provides annotations including bounding-box, human 2D pose, SMPL model annotations, instance mask and camera parameters.
Note: Not all the instances in this dataset are annotated in consideration of some inaccurate annotations or wrong relative occlusion.
bbox | keypoint | mask | SMPL | |
---|---|---|---|---|
Images | 13,665 | 13,665 | 13,665 | 13,665 |
Persons | 25,122 | 25,122 | 25,122 | 25,122 |
[Baidu Netdisk] [Google Drive]
We also provide full videos for 3DMPB dataset.
- python3
- numpy
- pytorch
- pyrender
Please download the dataset and extract under ./3DMPB
. Due to the licenses, please download SMPL model file here. The folder structure is shown as follows:
|-- 3DMPB
`-- |-- images
| |-- 000000.jpg
| |-- 000001.jpg
| |-- 000002.jpg
| |-- ...
|-- masks
| |-- 000000_00.jpg
| |-- 000000_01.jpg
| |-- 000000_02.jpg
| |-- 000001_00.jpg
| |-- 000002_00.jpg
| |-- ...
|-- annot.json
|-- data
`-- |-- SMPL_NEUTRAL.pkl
python vis_dataset.py --dataset_dir 3DMPB --output_dir output
python vis_dataset.py --dataset_dir 3DMPB --output_dir output --vis_smpl True
If you find this dataset useful for your research, please consider citing the paper.
@article{huang2022pose2uv,
title={Pose2UV: Single-shot Multi-person Mesh Recovery with Deep UV Prior},
author={Huang, Buzhen and Zhang, Tianshu and Wang, Yangang},
journal={IEEE Transactions on Image Processing},
year={2022},
volume={31},
pages={4679-4692}
}