Skip to content

API for the dataset proposed in "Pose2UV: Single-shot Multi-person Mesh Recovery with Deep UV Prior" @ TIP2022.

License

Notifications You must be signed in to change notification settings

boycehbz/3DMPB-dataset

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

3DMPB-dataset

Dataset proposed in "Pose2UV: Single-shot Multi-person Mesh Recovery with Deep UV Prior"
[ProjectPage] [paper] @ TIP2022.

Samples of 3DMPB Dataset

3DMPB is a multi-person dataset in the outdoor sport field with human interaction occlusion and image truncation. This dataset provides annotations including bounding-box, human 2D pose, SMPL model annotations, instance mask and camera parameters.

Statistics

Note: Not all the instances in this dataset are annotated in consideration of some inaccurate annotations or wrong relative occlusion.

bbox keypoint mask SMPL
Images 13,665 13,665 13,665 13,665
Persons 25,122 25,122 25,122 25,122

Download Links

[Baidu Netdisk] [Google Drive]

We also provide full videos for 3DMPB dataset.

[3DMPB-video]

Visualization

Requirements

  • python3
  • numpy
  • pytorch
  • pyrender

Prepare dataset

Please download the dataset and extract under ./3DMPB. Due to the licenses, please download SMPL model file here. The folder structure is shown as follows:

|-- 3DMPB
`-- |-- images
    |   |-- 000000.jpg
    |   |-- 000001.jpg
    |   |-- 000002.jpg
    |   |-- ...
    |-- masks
    |   |-- 000000_00.jpg
    |   |-- 000000_01.jpg
    |   |-- 000000_02.jpg
    |   |-- 000001_00.jpg
    |   |-- 000002_00.jpg
    |   |-- ...
    |-- annot.json
|-- data
`-- |-- SMPL_NEUTRAL.pkl    

Visualization

visualize 2D keypoints and boundingbox

python vis_dataset.py --dataset_dir 3DMPB  --output_dir output 

visualize 3D meshes

python vis_dataset.py --dataset_dir 3DMPB  --output_dir output --vis_smpl True

Citation

If you find this dataset useful for your research, please consider citing the paper.

@article{huang2022pose2uv,
  title={Pose2UV: Single-shot Multi-person Mesh Recovery with Deep UV Prior},
  author={Huang, Buzhen and Zhang, Tianshu and Wang, Yangang},
  journal={IEEE Transactions on Image Processing},
  year={2022},
  volume={31},
  pages={4679-4692}
}

About

API for the dataset proposed in "Pose2UV: Single-shot Multi-person Mesh Recovery with Deep UV Prior" @ TIP2022.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages