Node.js wrapper of scikit-learn
- install scikit-learn
npm install scikit-learn
var scikit = require('scikit-learn')
var inspect = require('inspect-stream');
var arrayify = require('arrayify-merge.s');
var slice = require('slice-flow.s');
var scikit = require('scikit-learn');
var features = scikit.dataset('load_digits.data'); //stream of features
var labels = scikit.dataset('load_digits.target'); //stream of labels
// arrayify is transform stream that turns two input streams
// into one stream by wraping packets of inputs in array.
// So trainingSet outputs arrays [<features>, <label>]
var trainingSet = arrayify();
features.pipe(trainingSet);
labels.pipe(trainingSet);
var clf = scikit.svm('SVC', {
gamma: 0.001,
C: 100
});
trainingSet
.pipe(slice([0, -1])) //passes all packets except last one
.pipe(clf)
.on('error', function (err) {
console.log(err);
})
.on('end', function () {
// now we have trained model
var predict = clf.predict();
var features = scikit.dataset('load_digits.data');
features.pipe(slice(-1)) //passes only last packet
.pipe(predict)
.pipe(inspect());
});
- name
String
Name of method ofsklearn.datasets
on python side concatenated by dot with name of dataset's subset. Ex: 'load_digits.target' - options
Object
Options of method
Returns readable stream of dataset
All fit streams are transform streams that acts like writable.
So you must listen on end
event instead of finish
to be sure that training finished
Accepts flow of arrays like [features, label] where 'features' is array of features and label is... label
Also fit stream have event 'model' that emits with trained model.
Model is Buffer
containing pickled object
Fit stream have method predict
that returns Predict stream
- name
String
Name of method ofsklearn.svm
- options
Object
Options for estimator
Predict stream is transform stream that accepts flow of arrays of features and outputs predictions