Skip to content

unofficial implementation(using keras) of (Fauluvégi, Ágota, et al. "A 3D Convolutional Neural Network for Light Field Depth Estimation." 2019 International Conference on 3D Immersion (IC3D). IEEE, 2019.)

Notifications You must be signed in to change notification settings

catdance124/3Dconv_LF_depth_estimation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

3Dconv_LF_depth_estimation

implementation (using keras) of ( Faluvégi, Ágota, et al. "A 3D Convolutional Neural Network for Light Field Depth Estimation." 2019 International Conference on 3D Immersion (IC3D). IEEE, 2019.)

Implementation env

  • Python 3.7.7
  • tensorflow==2.3.0
  • Keras==2.4.3
conda create -n LF_3Dconv python=3.7 anaconda
conda activate LF_3Dconv
pip install tensorflow==2.3.0 keras==2.4.3

The source code for the tensorflow 1.X can be found here.
https://github.com/catdance124/3Dconv_LF_depth_estimation/tree/1a9a17496fab37cd3ccb237156a78f5cc308e725

To run

Download light field dataset (from https://lightfield-analysis.uni-konstanz.de/).

Please set up the file structure as follows.

3Dconv_LF_depth_estimation/
  ┣━━ src/    ...    source codes
  ┣━━ output/    ...    dir for output (this will be created later automatically created.)
  ┣━━ patch_data/    ...    dir for patch data (the data will be created later.)
  ┃     ┣━━ train_data.txt        ...    scenes to use for training
  ┃     ┣━━ validation_data.txt   ...    scenes to use for validation
  ┃     ┗━━ test_data.txt         ...    scenes to use for test
  ┣━━ full_data/    ...    downloaded dataset
  ┃     ┣━━ additional/
  ┃     ┣━━ stratified/
  ┃     ┣━━ test/
  ┃     ┗━━ training/
  ┣━━ plot_result.py    ...    the script to create the figure below
  ┗━━ README.md    ...    this document

clone this repo

git clone https://github.com/catdance124/3Dconv_LF_depth_estimation.git
cd 3Dconv_LF_depth_estimation/src

Create patch dataset(The first time only.)

python ./create_dataset.py

Start training

python ./train.py

result

The predicts for each epoch are placed here.
output/YYYY-MM-DD_HHmm/fig/{epoch}.png

Each frame of the following figure was created by plot_result.py.
I used Giam to connect each frame and created the following figure.

# after rewrite the output_dir variable in ./plot_result.py
python ./plot_result.py
# save to ./output/YYYY-MM-DD_HHmm/result/{epoch}.png  

model architecture

About

unofficial implementation(using keras) of (Fauluvégi, Ágota, et al. "A 3D Convolutional Neural Network for Light Field Depth Estimation." 2019 International Conference on 3D Immersion (IC3D). IEEE, 2019.)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages