Skip to content

Commit

Permalink
minor changes
Browse files Browse the repository at this point in the history
  • Loading branch information
cbhurley committed Aug 2, 2024
1 parent 6c856e3 commit bd35e56
Show file tree
Hide file tree
Showing 17 changed files with 40 additions and 36 deletions.
3 changes: 2 additions & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,8 @@ Authors@R:
c(person(given = "Amit", family = "Chinwan", email = "amit.chinwan.2019@mumail.ie", role = c("aut")),
person(given = "Catherine", family = "Hurley", email = "catherine.hurley@mu.ie", role = c("aut", "cre")))
Description: We provide a tidy data structure and visualisations for multiple or grouped variable correlations,
general association measures and other pairwise scores suitable for numerical, ordinal and nominal variables.
general association measures scagnostics and other pairwise scores suitable for numerical, ordinal and nominal variables.
Supported measures include distance correlation, maximal information, ace correlation, Kendall's tau, and polychoric corrrelation.
License: MIT + file LICENSE
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
Expand Down
2 changes: 1 addition & 1 deletion NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@ export(pair_gkGamma)
export(pair_gkTau)
export(pair_methods)
export(pair_mine)
export(pair_multi)
export(pair_nmi)
export(pair_polychor)
export(pair_polyserial)
Expand All @@ -26,6 +25,7 @@ export(pair_tau)
export(pair_uncertainty)
export(pairwise)
export(pairwise_by)
export(pairwise_multi)
export(pairwise_scores)
export(plot_pairwise)
export(plot_pairwise_linear)
Expand Down
4 changes: 2 additions & 2 deletions R/pair_methods.R
Original file line number Diff line number Diff line change
Expand Up @@ -401,7 +401,7 @@ pair_uncertainty <- function(d,handle.na=TRUE,...){
#' @return A tibble of class `pairwise` with Goodman Kruskal's Tau for every factor variable pair,
#' or NULL if there are not at least two factor variables
#' @details The Goodman Kruskal's Tau coefficient is calculated using \code{\link[DescTools]{GoodmanKruskalTau}}
#' function from the \code{DescTools} package, and assumes factor levels are in the given order.
#' function from the \code{DescTools} package.
#' @export
#'
#' @examples
Expand Down Expand Up @@ -586,7 +586,7 @@ pair_methods <- dplyr::tribble(
"pair_polyserial", FALSE, FALSE, TRUE, "polycor::polyserial", "[-1,1]","factor treated as ordinal",
"pair_tau", FALSE, TRUE, FALSE, "DescTools::KendalTauA,B,C,W", "[-1,1]","factors treated as ordinal",
"pair_gkGamma", FALSE, TRUE, FALSE, "DescTools::GoodmanKruskalGamma", "[-1,1]","factors treated as ordinal",
"pair_gkTau", FALSE, TRUE, FALSE, "DescTools::GoodmanKruskalTau", "[0,1]","factors treated as ordinal",
"pair_gkTau", FALSE, TRUE, FALSE, "DescTools::GoodmanKruskalTau", "[0,1]","",
"pair_uncertainty", FALSE, TRUE, FALSE, "DescTools::UncertCoef", "[0,1]","",
"pair_chi", FALSE, TRUE, FALSE, "DescTools::ContCoef", "[0,1]","",
"pair_scag", TRUE, FALSE, FALSE, "scagnostics::scagnostics", "[0,1]","",
Expand Down
4 changes: 2 additions & 2 deletions R/pairwise.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
#' Creates a data structure for every variable pair in a dataset.
#'
#' @param x A dataframe or symmetric matrix.
#' @param score a character string indicating the value of association.
#' @param score a character string indicating the value of association, either "nn", "fn", "ff".
#' @param pair_type a character string specifying the type of variable pair.
#' @return A tbl_df of class `pairwise` for pairs of variables with a column `value` for the score value,
#' `score` for a type of association value and `pair_type` for the type of variable pair.
Expand Down Expand Up @@ -39,7 +39,7 @@ pairwise.matrix <- function(x, score=NA_character_, pair_type=NA_character_){
m <- x
if (!isSymmetric(m))
stop("Input must be a symmetric matrix")

xindex <- as.vector(row(m))
yindex <- as.vector(col(m))
rnames <- rownames(m) %||% paste0("V", seq_along(xindex))
Expand Down
4 changes: 2 additions & 2 deletions R/pair_multi.R → R/pairwise_multi.R
Original file line number Diff line number Diff line change
Expand Up @@ -15,10 +15,10 @@
#' @examples
#' iris1 <- iris
#' iris1$Sepal.Length <- cut(iris1$Sepal.Length,3)
#' pair_multi(iris1)
#' pairwise_multi(iris1)


pair_multi <- function(d,scores=c("pair_cor", "pair_dcor","pair_mine","pair_ace",
pairwise_multi <- function(d,scores=c("pair_cor", "pair_dcor","pair_mine","pair_ace",
"pair_cancor","pair_nmi","pair_uncertainty",
"pair_chi"),
handle.na=T) {
Expand Down
9 changes: 5 additions & 4 deletions R/pairwise_scores.R
Original file line number Diff line number Diff line change
Expand Up @@ -24,14 +24,15 @@
#' irisc <- pairwise_scores(iris, control=pair_control(fn="pair_ace"))
#'
#' #Lots of numerical measures
#' irisc <- pairwise_scores(iris, control=pair_control(nn="pair_multi", fn=NULL))
#' irisc <- pairwise_scores(iris, control=pair_control(nn="pair_multi", nnargs="pair_cor", fn=NULL))
#' irisc <- pairwise_scores(iris, control=pair_control(nn="pairwise_multi", fn=NULL))
#' irisc <- pairwise_scores(iris,
#' control=pair_control(nn="pairwise_multi", nnargs="pair_cor", fn=NULL))

#' #conditional measures
#' cond_iris <- pairwise_scores(iris, by = "Species")
#' cond_iris_wo <- pairwise_scores(iris, by = "Species",ungrouped=FALSE) # without overall
#' irisc <- pairwise_scores(iris, control=pair_control(nn="pair_multi", fn=NULL))
#' irisc <- pairwise_scores(iris, by = "Species",control=pair_control(nn="pair_multi", fn=NULL))
#' irisc <- pairwise_scores(iris, control=pair_control(nn="pairwise_multi", fn=NULL))
#' irisc <- pairwise_scores(iris, by = "Species",control=pair_control(nn="pairwise_multi", fn=NULL))
#'
#' #scagnostics
#' sc <- pairwise_scores(iris, control=pair_control(nn="pair_scagnostics", fn=NULL)) # ignore fn pairs
Expand Down
2 changes: 1 addition & 1 deletion R/plot_pairwise.R
Original file line number Diff line number Diff line change
Expand Up @@ -169,7 +169,7 @@ plot_pairwise_prep <- function(scores, score_limits=NULL, var_order=NULL, ignore
#' @examples
#' plot_pairwise_linear(pairwise_scores(iris))
#' plot_pairwise_linear(pairwise_scores(iris,by="Species"))
#' plot_pairwise_linear(pair_multi(iris), geom="point")
#' plot_pairwise_linear(pairwise_multi(iris), geom="point")
#' @export
#'

Expand Down
2 changes: 1 addition & 1 deletion man/bullseye-package.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/pair_gkTau.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/pairwise.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

10 changes: 5 additions & 5 deletions man/pair_multi.Rd → man/pairwise_multi.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

9 changes: 5 additions & 4 deletions man/pairwise_scores.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/plot_pairwise_linear.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion tests/testthat/test-pair_methods.R
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ test_that("pair ace", {


test_that("pair multi", {
p <- pair_multi(iris)
p <- pairwise_multi(iris)
expect_s3_class(p, "pairwise")
expect_identical(dim(p), c(54L,6L))
})
Expand Down
10 changes: 5 additions & 5 deletions vignettes/calc_pairwise.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ knitr::opts_chunk$set(
)
```

`bullseye` is an R package which calculates measures of association and other scores for pairs of variables in a dataset and helps in visualising these measures in different layouts. The package also calculates and visualises the pairwise measures for different levels of a grouping variable.
`bullseye` is an R package which calculates measures of correlation and other association scores for pairs of variables in a dataset and offers visualisations of these measures in different layouts. The package also calculates and visualises the pairwise scores for different levels of a grouping variable.

This vignette gives an overview of how these pairwise variable measures are calculated. Visualisations of these calculated measures are provided in the accompanying vignette.

Expand Down Expand Up @@ -81,14 +81,14 @@ If you want for instance to compare distance correlation and mutual information
bind_rows(sc_dcor, sc_nmi) |> arrange(x,y)
```

We provide another function `pair_multi` which calculates multiple association measures for every variable pair in a dataset.
We provide another function `pairwise_multi` which calculates multiple association measures for every variable pair in a dataset.
By default this function combines the results of `pair_cor`, `pair_dcor`,`pair_mine`,`pair_ace`,
`pair_cancor`,`pair_nmi`,`pair_uncertainty`,
`pair_chi`, but any subset of the `pair_` functions may be supplied as an argument, as in the second example below.

```{r}
pair_multi(penguins)
dcor_nmi <- pair_multi(penguins, c("pair_dcor", "pair_nmi"))
pairwise_multi(penguins)
dcor_nmi <- pairwise_multi(penguins, c("pair_dcor", "pair_nmi"))
```


Expand All @@ -115,7 +115,7 @@ sc_sex |> distinct(group)
If you want to calculate different scores to the default, specify this via the `control` argument:

```{r}
pc <- pair_control(nn="pair_multi", nnargs= c("pair_dcor", "pair_ace"), fn=NULL, ff=NULL)
pc <- pair_control(nn="pairwise_multi", nnargs= c("pair_dcor", "pair_ace"), fn=NULL, ff=NULL)
sc_sex <- pairwise_scores(penguins, by="species", control=pc, ungrouped=FALSE)
```

Expand Down
7 changes: 4 additions & 3 deletions vignettes/integrating.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -85,8 +85,9 @@ plot(as.pairwise(sc_cor))

Multiple measures from `correlation` can also be used:
```{r}
sc_multi<- bind_rows(as.pairwise(correlation::correlation(peng, method = "pearson")),
as.pairwise(correlation::correlation(peng, method = "blomqvist")),
as.pairwise(correlation::correlation(peng, method = "biweight")))
sc_multi<- bind_rows(
as.pairwise(correlation::correlation(peng, method = "pearson")),
as.pairwise(correlation::correlation(peng, method = "blomqvist")),
as.pairwise(correlation::correlation(peng, method = "biweight")))
plot(sc_multi)
```
2 changes: 1 addition & 1 deletion vignettes/vis_pairwise.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -176,7 +176,7 @@ kableExtra::kbl(df, booktabs = T, caption = "Variable description of the acs12 d
```{r}
acs12 <- openintro::acs12
scores <- pair_multi(acs12)
scores <- pairwise_multi(acs12)
```
The `scores` contains various pairwise measures for the 78 variable pairs. Many of the scores will be low,
so we pick out the pairs with a score of .25 or above to display:
Expand Down

0 comments on commit bd35e56

Please # to comment.