Skip to content

chiarasabaini/parco-homework

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Introduction to Parallel Computing - Deliverable 1

Tags Language Version Author


Table of Contents


Project Structure

├── docs
│   ├── report.pdf
│   ├── res/plots
│       ├── *.png
├──inc
│   ├── matrix_operations.h
│   ├── test.h
│   ├── utils.h
├── out
│   ├── data
│       ├── *.csv
│   ├── err.e
│   ├── out.o
├── src
│   ├── main.c
│   ├── matrix_operations.c
│   ├── test.c
│   ├── utils.c
│   ├── performance_analysis.ipynb
├── .gitignore
├── CMakeLists.txt
├── IPC_homework.pbs
├── README.md

How to Reproduce

On HPC Cluster

Prerequisites

  • Access to the HPC cluster (in this case of the University of Trento)
  • SSH client

Steps

  1. Open an ssh session on University of Trento's HPC cluster, in your preferred terminal
$ ssh <username>@hpc.unitn.it
  1. Clone the repository
$ git clone https://github.com/chiarasabaini/parco-homework.git
  1. Navigate the the repository folder
$ cd parco-homework/
  1. Run the following command:
$ qsub IPC_homework.pbs

On your local machine

Prerequisites

  • CMake
  • Make
  • C Compiler

Steps

  1. Clone the repository
$ git clone https://github.com/chiarasabaini/parco-homework.git
  1. Navigate the the repository folder
$ cd parco-homework/
  1. Create a build directory
$ mkdir build
  1. Navigate to the build directory
$ cd build/
  1. Run the following commands:
$ cmake ..
$ make
  1. Run the executable
$ ./project.exe

Data Analysis

You will find all of the .csv files containing the data inside the data/ folder. You can process the data and plot the graphs using the provided Jupyter Notebook in the src/ folder.

Happy testing!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published