딥러닝을 활용한 홈짐 트레이닝 서비스
-
김성진
-
이태민
-
정의정
-
채진영
어디서든 편하게 운동할 수 있으며 개개인에게 맞춤형 피드백을 제공하는 딥러닝을 활용한 모바일헬스 서비스를 제작한다.
- Pose Estimate using Object Detection
- Feedback SPEED, POSTURE(knee, wrist)
- Providing cumulative score for increasing Engage
python main.py
- [] sound feedback
- [] Torso normalization
- [] Upgrade UI/UX
- Train COCO Human data
- Make scoring pose algorithm
- Make base UI/UX
- Denote scores
- Make ground truth skeleton
- Make pose estimation model
- Email to Stanford Univ Student to get dataset
Python : 3.7
Tensorflow : 1.8.0
Opencv : 3.4.2
Pillow : 6.0.0
Pandas : 0.25.0
Matplotlib : 3.1.0
Numpy : 1.16.4
pygame : 1.9.6
scikit-learn : 0.21.3
The pretrained pose weights file can be downloaded here. Place this weights file under directory ./data/pose_weights/