This repository is the official pytorch implementation of the eps-softmax [NeurIPS2024].
We simplify
Benchmark Datasets: The running file is main.py
.
- --dataset: cifar10 | cifar100, etc.
- --loss: ECEandMAE, EFLandMAE, CE, GCE, etc.
- --noise_type: symmetric | asymmetric | dependent (instance-dependent noise), etc.
CE main_semi.py
.
- --dataset: cifar10 | cifar100.
- --noise_type: human (cifar-n dataset), etc.
Real-World Datasets: The running file is main_real_world.py
.
- --dataset: webvision | clothing1m.
- --loss: ECEandMAE, EFLandMAE, CE, GCE, etc.
ECEandMAE for cifar10 0.8 symmetric noise:
$ python3 main.py --dataset cifar10 --noise_type symmetric --noise_rate 0.8 --loss ECEandMAE
ECEandMAE(Semi) for cifar10 human (cifar-n dataset) worst:
$ python3 main_semi.py --dataset cifar10 --noise_type human --noise_rate worst
ECEandMAE for webvision:
$ python3 main_real_world.py --dataset webvision --loss ECEandMAE
For technical details and full experimental results, please check the paper. If you have used our method or code in your own, please consider citing:
@inproceedings{wang2024epsilonsoftmax,
title={\${\textbackslash}epsilon\$-Softmax: Approximating One-Hot Vectors for Mitigating Label Noise},
author={Jialiang, Wang and Xiong, Zhou and Deming, Zhai and Junjun, Jiang and Xiangyang, Ji and Xianming, Liu},
booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
year={2024}
}