-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
232 lines (177 loc) · 8.5 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import re
import sys
import json
import torch
import inflect
import argparse
import numpy as np
from nltk import word_tokenize
from scorers.cider.cider import CiderScorer
from scorers.meteor.meteor import Meteor
import gensim.models.fasttext as FastText
from bert_serving.client import BertClient
from nltk.tokenize.treebank import TreebankWordDetokenizer
def main():
parser = argparse.ArgumentParser(description='Generative Evaluation for Visual Dialogue')
parser.add_argument('--generations', dest='generations', default='./generations.json', help='Path to file with answer generations.')
parser.add_argument('--references', dest='references', default='densevisdial/refs_S_val.json', help='Path to file with answer reference sets.')
# overlap (CIDER, METEOR) parameters
parser.add_argument('--n', dest='n', type=int, default=4, help='Cider n-gram (computes 1 to n).')
parser.add_argument('--no_overlap', dest='no_overlap', action='store_true', help='Do not compute overlap metrics.')
# embedding distance FastText parameters
parser.add_argument('--fast_text_model', dest='fast_text_model', required=True, help='Path to FastText .bin model.')
parser.add_argument('--no_embedding', dest='no_embedding', action='store_true', help='Do not compute embedding metrics.')
args = parser.parse_args()
# load answer generations and reference sets
print ('loading generations and references from .json files...')
with open(args.generations) as f:
gens = json.load(f)
with open(args.references) as f:
refs = json.load(f)
print ('preparing data...')
generations, references = prepare_data(gens, refs)
print ('# question-answer pairs: ' + str(len(refs)))
# load models
print ('loading models and word embeddings (may take a few minutes)...')
if not args.no_overlap:
cider_model = CiderScorer(references, n=args.n)
meteor_model = Meteor()
if not args.no_embedding:
bert_client = BertClient(check_length=False)
fasttext_wordvectors = FastText.load_facebook_vectors(args.fast_text_model)
numconverter = inflect.engine()
print ('models loaded!')
scores = initialise_score_dicts(args)
print ('evaluating generations...')
for i, (gs, rs) in enumerate(zip(generations, references)):
sys.stdout.write('\r{}/{} --> {:3.1f}%'.format(str(i+1), str(len(references)), (i+1)/float(len(references))*100))
sys.stdout.flush()
cider_list, meteor_list = [], []
bert_list, fasttext_list = [], []
# get bert embeddings of references
if not args.no_embedding:
bert_refs = get_bert_features(rs, bert_client)
fasttext_refs = get_fasttext_features(rs, fasttext_wordvectors, numconverter)
for ii, g in enumerate(gs): # loops through answer generations, if multiple
if g == "": # ignore empty string
scores['empty'] += 1
else:
if not args.no_overlap:
cider_list.append(compute_cider(g, rs, cider_model))
meteor_list.append(compute_meteor(g, rs, meteor_model))
if not args.no_embedding:
bert_list.append(compute_bert(g, bert_refs, bert_client))
fasttext_list.append(compute_fasttext(g, fasttext_refs, fasttext_wordvectors, numconverter))
# average over multiple generations
if not args.no_overlap:
n_grams_cider = np.mean(cider_list, axis=0)
for n, n_gram_cider in enumerate(n_grams_cider):
scores['cider_{:d}'.format(n+1)].append(n_gram_cider)
scores['meteor'].append(np.mean(meteor_list))
if not args.no_embedding:
bert_scores = np.mean(bert_list, axis=0)
scores['bert_l2'].append(bert_scores[0])
scores['bert_cs'].append(bert_scores[1])
fasttext_scores = np.mean(fasttext_list, axis=0)
scores['fasttext_l2'].append(fasttext_scores[0])
scores['fasttext_cs'].append(fasttext_scores[1])
sys.stdout.write('\n')
print_scores(scores)
if 'meteor' in scores:
meteor_model.close()
def initialise_score_dicts(args):
scores = {}
# overlap
if not args.no_overlap:
for n in range(args.n):
scores['cider_{:d}'.format(n+1)] = []
scores['meteor'] = []
# embedding
if not args.no_embedding:
scores['bert_l2'] = []
scores['bert_cs'] = []
scores['fasttext_l2'] = []
scores['fasttext_cs'] = []
# admin
scores['empty'] = 0
return scores
def print_scores(scores):
headings = ""
output = ""
tb = "\t"
for metric,scores_list in scores.items():
headings += metric + tb + tb
output += '{0:.4f} ({1:.4f})'.format(np.mean(scores_list), np.std(scores_list)) + tb
print ('--'*10)
print (headings)
print ('--'*10)
print (output)
print ('--'*10)
def prepare_data(gens, refs):
sorted_gens = sorted(gens, key=lambda k: (k['image_id'], k['round_id']))
sorted_refs = sorted(refs, key=lambda k: (k['image_id'], k['round_id']))
offset = 1 if (len(gens) == len(refs)) else int(len(sorted_gens)/len(sorted_refs))
dt = TreebankWordDetokenizer()
generations, references = [], []
for i, refs in enumerate(sorted_refs):
sys.stdout.write('\r{}/{} --> {:3.1f}%'.format(str(i+1), str(len(sorted_refs)), (i+1)/float(len(sorted_refs))*100))
sys.stdout.flush()
if offset == 1:
gens = sorted_gens[i]
else:
gens = sorted_gens[i * offset + refs['round_id'] ]
# ensure gens and refs correspond to same image/round
assert (gens['image_id'] == refs['image_id'])
assert (gens['round_id'] == refs['round_id'])
# list of generated answers (can be multiple generated answer per entry)
generations.append( [dt.detokenize(word_tokenize(a_gen)) for a_gen in gens['generations'] ] )
# list of references answers
references.append( refs['refs'] )
#references.append( [dt.detokenize(word_tokenize(a_ref)) for a_ref in refs['refs']] )
sys.stdout.write('\n')
return generations, references
def compute_cider(generation, references, cider_model):
return cider_model.compute_score(generation, references)
def compute_meteor(generation, references, meteor_model):
score, _ = meteor_model.compute_score(generation, references)
return score
def get_fasttext_features(sentences, wordvectors, numconverter):
if not isinstance(sentences, list):
sentences = [sentences]
# get fasttext embedding
emb_sentences = []
for sentence in sentences:
clean_sentence = re.sub(r'\d+', lambda x: digitreplacer(x.group(), numconverter), sentence).lower()
vecs=[]
words = clean_sentence.split()
for word in words:
vecs.append( wordvectors[ word ])
emb_sentences.append( np.mean(vecs, axis=0) )
return torch.Tensor( emb_sentences ).view(-1, 300)
def compute_fasttext(generation, fasttext_references, wordvectors, numconverter):
# get fasttext avg embedding of generation
fasttext_generation = get_fasttext_features(generation, wordvectors, numconverter)
# l2 distance
l2 = torch.nn.PairwiseDistance(p=2)(fasttext_references, fasttext_generation.expand_as(fasttext_references))
# cosine similarity
cosine = torch.nn.CosineSimilarity(dim=1, eps=1e-08)(fasttext_references, fasttext_generation.expand_as(fasttext_references))
return l2.mean().item(), cosine.mean().item()
def get_bert_features(sentences, bert_client):
if not isinstance(sentences, list):
sentences = [sentences]
emb_sentences = bert_client.encode(sentences)
return torch.Tensor(emb_sentences).view(-1, 768)
def compute_bert(generation, bert_references, bert_client):
# get bert embedding of generation
bert_generation = get_bert_features(generation, bert_client)
# l2 distance
l2 = torch.nn.PairwiseDistance(p=2)(bert_references, bert_generation.expand_as(bert_references))
# cosine similarity
cosine = torch.nn.CosineSimilarity(dim=1, eps=1e-08)(bert_references, bert_generation.expand_as(bert_references))
return l2.mean().item(), cosine.mean().item()
# convert digits to words
def digitreplacer(digit, numconverter):
return numconverter.number_to_words((digit)).replace("-"," ")
if __name__ == '__main__':
main()