Simlified pytorch training!
PyPI project: https://pypi.org/project/train-pytorch/
The package provide:
- A basic
Trainer
class to facilidate pytorch model training. - Some functions to compute common accuracy metrics including:
binary_AUC
binary_accuracy
multiple_class_accuracy
regression_r2
You can also define your own function to input into the Trainer
class as long as your function can:
- take 2 inputs:
logits
andlabels
- perform all computation on:
torch.tensor
- return a python value by:
value.item()
An example of our provided binary_accuracy
function is:
def binary_accuracy(logits, labels, cutoff=0):
"""
Calculate binary accuracy given model logits and true labels.
Parameters:
- logits (torch.Tensor): Model logits or predicted scores (output before activation function).
- labels (torch.Tensor): True binary labels (0 or 1).
- cutoff (float, optional): Threshold for binary classification (default is 0).
Returns:
- float: Binary accuracy.
Example:
logits = torch.tensor([0.2, 0.7, 0.4, 0.9])
labels = torch.tensor([0, 1, 0, 1])
accuracy = binary_accuracy(logits, labels, cutoff=0.5)
print("Binary Accuracy:", accuracy)
"""
# Ensure logits and labels are on the CPU
logits, labels = logits.cpu(), labels.cpu()
# Convert logits to binary predictions using the specified cutoff
predicts = (logits > cutoff).float()
# Calculate binary accuracy
accuracy = (predicts == labels).float().mean()
# Return the binary accuracy as a float
return accuracy.item()
From Github:
git clone https://github.com/datngu/train_pytorch
cd train_pytorch
pip install .
From PyPI:
pip install train-pytorch
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
## import train_pytorch packages and metric functions
from train_pytorch import Trainer, binary_accuracy, multiple_class_accuracy, regression_r2
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=512, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=512, shuffle=False)
class CNNModel(nn.Module):
def __init__(self):
super(CNNModel, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = nn.Linear(64 * 7 * 7, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.pool(torch.relu(self.conv1(x)))
x = self.pool(torch.relu(self.conv2(x)))
x = x.view(-1, 64 * 7 * 7)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
model = CNNModel()
## GPU: optional
#device = torch.device("cuda:0" if torch.cuda.is_available() else "mps")
#model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
trainer = Trainer(model, criterion, optimizer, multiple_class_accuracy, num_epochs = 10, early_stoper = 5)
trainer.fit(train_loader, train_loader, './output_dir')
import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_breast_cancer
from torch.utils.data import Dataset, DataLoader
## import train_pytorch packages and metric functions
from train_pytorch import Trainer, binary_accuracy, multiple_class_accuracy, regression_r2
data = load_breast_cancer()
x = data['data']
y = data['target']
sc = StandardScaler()
x = sc.fit_transform(x)
## create dataset class
class dataset(Dataset):
def __init__(self,x,y):
self.x = torch.tensor(x,dtype=torch.float32)
self.y = torch.tensor(y,dtype=torch.float32)
self.length = self.x.shape[0]
def __getitem__(self,idx):
return self.x[idx],self.y[idx]
def __len__(self):
return self.length
# a bit lazy to slipt train and test data, but it is okey for tutorial :D
train_data = dataset(x,y)
val_data = dataset(x,y)
train_loader = DataLoader(train_data,batch_size=64,shuffle=False)
val_loader = DataLoader(val_data,batch_size=64,shuffle=False)
class Net(nn.Module):
def __init__(self,input_shape):
super(Net,self).__init__()
self.fc1 = nn.Linear(input_shape,32)
self.fc2 = nn.Linear(32,64)
self.fc3 = nn.Linear(64,1)
def forward(self,x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
model = Net(input_shape=x.shape[1])
## GPU: optional
#device = torch.device("cuda:0" if torch.cuda.is_available() else "mps")
#model.to(device)
optimizer = torch.optim.SGD(model.parameters(),lr=0.1)
loss_fn = nn.BCEWithLogitsLoss()
trainer = Trainer(model, loss_fn, optimizer, binary_accuracy, num_epochs=10)
trainer.fit(train_loader, val_loader, './output_dir')