-
Notifications
You must be signed in to change notification settings - Fork 21
Models of Evolution
ddarriba edited this page Sep 2, 2020
·
10 revisions
Model | Reference | d.f. | Base freq | Symmetries | code |
---|---|---|---|---|---|
JC | Jukes and Cantor 1969 | 0 | equal | AC=AG=AT=CG=CT=GT | 000000 |
F81 | Felsenstein, 1981 | 3 | unequal | AC=AG=AT=CG=CT=GT | 000000 |
K80 | Kimura, 1980 | 1 | equal | AC=AT=CG=GT ; AG=CT | 010010 |
HKY | Hasegawa et al., 1985 | 4 | unequal | AC=AT=CG=GT ; AG=CT | 010010 |
TrNef (TN93ef) | Tamura and Nei, 1993 | 2 | equal | AC=AT=CG=GT ; AG ; CT | 010020 |
TrN (TN93) | Tamura and Nei, 1993 | 5 | unequal | AC=AT=CG=GT ; AG ; CT | 010020 |
TPM1 (K81) | Kimura, 1981 | 2 | equal | AC=GT ; AG=CT ; AT=CG | 012210 |
TPM1uf (K81uf) | Kimura, 1981 | 5 | unequal | AC=GT ; AG=CT ; AT=CG | 012210 |
TPM2 | 2 | equal | AC=AT ; CG=GT ; AG=CT | 010212 | |
TPM2uf | 5 | unequal | AC=AT ; CG=GT ; AG=CT | 010212 | |
TPM3 | 2 | equal | AC=CG ; AG=CT ; AT=GT | 012012 | |
TPM3uf | 5 | unequal | AC=CG ; AG=CT ; AT=GT | 012012 | |
TIM1 | Posada, 2003 | 3 | equal | AC=GT ; AT=CG ; AG ; CT | 012230 |
TIM1uf | Posada, 2003 | 6 | unequal | AC=GT ; AT=CG ; AG ; CT | 012230 |
TIM2 | 3 | equal | AC=AT ; CG=GT ; AG ; CT | 010232 | |
TIM2uf | 6 | unequal | AC=AT ; CG=GT ; AG ; CT | 010232 | |
TIM3 | 3 | equal | AC=CG ; AT=GT ; AG ; CT | 012032 | |
TIM3uf | 6 | unequal | AC=CG ; AT=GT ; AG ; CT | 012032 | |
TVMef | Posada, 2003 | 4 | equal | AC ; CG ; AT ; GT ; AG=CT | 012314 |
TVM | Posada, 2003 | 7 | unequal | AC ; CG ; AT ; GT ; AG=CT | 012314 |
SYM | Zharkikh, 1994 | 5 | equal | AC ; CG ; AT ; GT ; AG ; CT | 012345 |
GTR (REV) | Tavaré. 1986 | 8 | unequal | AC ; CG ; AT ; GT ; AG ; CT | 012345 |
- Abdo, Z., Minin, V., Joyce, P., and Sullivan, J. (2005). Accounting for uncertainty in the tree topology has little effect on the decision-theoretic approach to model selection in phylogeny estimation. Molecular Biology and Evolution, 22, 691–703.
- Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.
- Burnham, K. and Anderson, D. (1998). Model selection and inference: a practical information-theoretic approach. Springer-Verlag, New York, NY.
- Burnham, K. and Anderson, D. (2003). Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York, NY.
- Felsenstein, J. (1981). Evolutionary trees from dna sequences: A maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.
- Felsenstein, J. (1988). Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics, 22, 521–565.
- Goldman, N. (1993a). Simple diagnostic statistical test of models of dna substitution. Journal of Molecular Evolution, 37, 650–661.
- Goldman, N. (1993b). Statistical tests of models of dna substitution. Journal of Molecular Evolution, 36, 182–198.
- Goldman, N. and Whelan, S. (2000). Statistical tests of gamma-distributed rate heterogeneity in models of sequence evolution in phylogenetics. Molecular Biology and Evolution, 17, 975–978.
- Hasegawa, M., Kishino, K., and Yano, T. (1985). Dating the human-ape splitting by a molecular clock of mitochondrial dna. Journal of Molecular Evolution, 22, 160–174.
- Hoeting, J., Madigan, D., and Raftery, A. (1999). Bayesian model averaging: A tutorial. Statistical Science, 14, 382–417.
- Huelsenbeck, J., Larget, B., and Alfaro, M. (2004). Bayesian phylogenetic model selection using reversible jump markov chain monte carlo. Molecular Biology and Evolution, 21, 1123–1133.
- Hurvich, C. and Tsai, C. (1989). Regression and time series model selection in small samples. Biometrika, 76, 297–307.
- Johnson, J. and Omland, K. (2003). Model selection in ecology and evolution. Trends in Ecology and Evolution, 19, 101–108.
- Jukes, T. and Cantor, C. (1969). Evolution of protein molecules. Academic Press, New York, NY, pages 21–132.
- Kendall, M. and Stuart, A. (1979). The advanced theory of statistics. Charles Griffin, London.
- Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.
- Kimura, M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, U.S.A, 78, 454–458.
- Madigan, D. and Raftery, A. (1994). Model selection and accounting for model uncertainty in graphical models using occam’s window. Journal of the American Statistical Association, 59, 1335–1346.
- Minin, V., Abdo, Z., and P. Joyce, J. S. (2003). Performance-based selection of likelihood models for phylogeny estimation. Systematic Biology, 52, 674–683.
- Ohta, T. (1992). Theoretical study of near neutrality. ii. effect of subdivided population structure with local extinction and recolonization. Genetics, pages 917–923.
- Posada, D. (2003). Using modeltest and paup to select a model of nucleotide substitution. pages 6.5.1–6.5.14.
- Posada, D. and Buckley, T. (2004). Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Systematic Biology, 53, 793–808.
- Posada, D. and Crandall, K. (2001). Selecting the best-fit model of nucleotide substitution. Systematic Biology, 50, 580–601.
- Raftery, A. (1996). Hypothesis testing and model selection. Markov chain Monte Carlo in practice. Chapman and Hall, London, pages 163–187.
- S. Kullback, R. L. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79–86.
- Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.
- Sugiura, N. (1978). Further analysis of the data by akaike’s information criterion and the finite corrections. Communications in StatisticsTheory and Methods, A7, 13–26.
- Sullivan, J. and Joyce, P. (2005). Model selection in phylogenetics. Annual Review of Ecology, Evolution and Systematics, 36, 445–466.
- Tamura, K. and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial dna in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.
- Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of dna sequences. Some mathematical questions in biology - DNA sequence analysis. Amer. Math. Soc., Providence, RI, pages 57–86.
- Wasserman, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical Psychology 44:92-107, 44, 92–107.
- Whelan, S. and Goldman, N. (1999). Distributions of statistics used for the comparison of models of sequence evolution in phylogenetics. Molecular Biology and Evolution, 16, 1292–1299.
- Yang, Z., Goldman, N., and A.Friday (1995). Maximum likelihood trees from dna sequences: a peculiar statistical estimation problem. Systematic Biology, 44, 384–399.
- Zharkikh, A. (1994). Estimation of evolutionary distances between nucleotide sequences. Journal of Molecular Evolution, 39, 315–329.
- Dayhoff (Dayhoff et al., 1978)
- LG (Le and Gascuel, 2008)
- DCMut (Kosiol and Goldman, 2005)
- JTT (Jones et al., 1992)
- mtREV (Adachi and Hasegawa, 1996)
- WAG (Whelan and Goldman, 2001)
- RtREV (Dimmic et al., 2002)
- CpREV (Adachi and Waddell, 2000)
- VT (Muller and Vingron 2000)
- Blosum62 (Henikoff and Henikoff, 1992)
- MtMam (Cao et al., 1998)
- MtArt (Abascal et al., 2007)
- MtZoa (Rota-Stabelli et al., 2009)
- PMB (Veerassamy, Smith and Tillier, 2003)
- HIVb (Nickle et al. 2007)
- HIVw (Nickle et al. 2007)
- JTT-DCMut (Kosiol and Goldman, 2005)
- FLU (Dang et al., 2010)
- StmtREV (Liu et al., 2014)
- Abascal, F., Posada, D., and Zardoya, R. 2007. MtArt: a new model of amino acid replacement for Arthropoda. Mol Biol Evol 24: 1-5.
- Adachi, J., and Hasegawa, M. 1996. Model of amino acid substitution in proteins encoded by mitochondrial DNA. J. Mol. Evol. 42: 459-468.
- Adachi, J., Waddell, P.J., Martin, W., and Hasegawa, M. 2000. Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA. J Mol Evol 50: 348-358.
- Cao, Y., Janke, A., Waddell, P.J., Westerman, M., Takenaka, O., Murata, S., Okada, N., Paabo, S., and Hasegawa, M. 1998. Conflict among individual mitochondrial proteins in resolving the phylogeny of eutherian orders. J Mol Evol 47: 307-322.
- Dang, CC, Le, Q.S., Gascuel, O and Le, V. S. 2010. FLU, an amino acid substitution model for influenza proteins. BMC Evolutionary Biology 2010, 10:99.
- Dayhoff, M.O., Schwartz, R.M., and Orcutt, B.C. 1978. A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure. (ed. M.O. Dayhoff), pp. 345-352. National Biomedical Research Foundation, Washington, DC.
- Dimmic, M.W., Rest, J.S., Mindell, D.P., and Goldstein, R.A. 2002. rtREV: an amino acid substitution matrix for inference of retrovirus and reverse transcriptase phylogeny. J Mol Evol 55: 65-73.
- Henikoff, S., and Henikoff, J.G. 1992. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89: 10915-10919.
- Jones, D.T., Taylor, W.R., and Thornton, J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Comp. Appl. Biosci. 8: 275-282.
- Kosiol, C., and Goldman, N.2005. Different Versions of the Dayhoff Rate Matrix. Mol. Biol. Evol. 22:193-199.
- Le, S.Q., and Gascuel, O. 2008. An improved general amino acid replacement matrix. Mol Biol Evol 25: 1307-1320.
- Liu, Y., Cox, C. J., Wang, W., & Goffinet, B. 2014. Mitochondrial phylogenomics of early land plants: Mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias. Systematic biology, 63(6), 862-878.
- Muller, T., and Vingron, M. 2000. Modeling amino acid replacement. J Comput Biol 7: 761-776.
- Nickle, D.C., Heath, L., Jensen, M.A., Gilbert, P.B., Mullins, J.I., and Kosakovsky Pond, S.L. 2007. HIV-specific probabilistic models of protein evolution. PLoS ONE 2: e503.
- Rota-Stabelli, O., Yang, Z., & Telford, M. J. 2009. MtZoa: a general mitochondrial amino acid substitutions model for animal evolutionary studies. Molecular phylogenetics and evolution, 52(1), 268-272.
- Thorne, J.L., and Goldman, N. 2003. Probabilistic models for the study of protein evolution. In Handbook of Statistical Genetics. (ed. M.B. D.J. Balding, and C. Cannings), pp. 209-226. John Wiley & Sons, Ltd., Chichester, England.
- Veerassamy, S., Smith, A., & Tillier, E. R. 2003. A transition probability model for amino acid substitutions from blocks. Journal of Computational Biology, 10(6), 997-1010.
- Whelan, S., & Goldman, N. 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular biology and evolution, 18(5), 691-699.