This is the implementation of our CVPR'23 paper On the Pitfall of Mixup for Uncertainty Calibration. In the paper, we conduct a series of empirical studies showing the calibration issue of Mixup, and propose a new mixup training strategy to address this issue.
This code requires the following:
- Python 3.6,
- numpy 1.22.3,
- Pytorch 1.8.1+cu111,
- torchvision 0.9.1+cu111.
For example, you can:
-
Download CIFAR-10 dataset into
./data/
. -
Run the following demos:
python main.py --dataset cifar10 --arch resnet18 --method ce --seed 101
python main.py --dataset cifar10 --arch resnet18 --method mixup --alpha 1.0 --seed 101
python main.py --dataset cifar10 --arch resnet18 --method MIT-L --alpha 1.0 --margin 0 --seed 101
python main.py --dataset cifar10 --arch resnet18 --method MIT-A --alpha 1.0 --margin 0 --seed 101
python main.py --dataset cifar10 --arch resnet18 --method MIT-A --alpha 1.0 --margin 0.5 --seed 101
@inproceedings{CVPR23Wang,
author = {Deng-Bao Wang, Lanqing Li, Peilin Zhao, Pheng-Ann Heng, Min-Ling Zhang},
title = {On the Pitfall of Mixup for Uncertainty Calibration},
booktitle = {Proceedings of the 34th IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year = {2023}
}
If you have any further questions, please feel free to send an e-mail to: wangdb@seu.edu.cn.