Skip to content

This is the implementation of our CVPR'23 paper On the Pitfall of Mixup for Uncertainty Calibration. In the paper, we conduct a series of empirical studies showing the calibration issue of Mixup, and propose a new mixup training strategy to address this issue.

Notifications You must be signed in to change notification settings

dengbaowang/Mixup-Inference-in-Training

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Mixup-Inference-in-Training

This is the implementation of our CVPR'23 paper On the Pitfall of Mixup for Uncertainty Calibration. In the paper, we conduct a series of empirical studies showing the calibration issue of Mixup, and propose a new mixup training strategy to address this issue.

Dependencies

This code requires the following:

  • Python 3.6,
  • numpy 1.22.3,
  • Pytorch 1.8.1+cu111,
  • torchvision 0.9.1+cu111.

Training

For example, you can:

  1. Download CIFAR-10 dataset into ./data/.

  2. Run the following demos:

python main.py  --dataset cifar10 --arch resnet18 --method ce --seed 101

python main.py  --dataset cifar10 --arch resnet18 --method mixup --alpha 1.0 --seed 101

python main.py  --dataset cifar10 --arch resnet18 --method MIT-L --alpha 1.0 --margin 0 --seed 101

python main.py  --dataset cifar10 --arch resnet18 --method MIT-A --alpha 1.0 --margin 0 --seed 101

python main.py  --dataset cifar10 --arch resnet18 --method MIT-A --alpha 1.0 --margin 0.5 --seed 101

Citation

@inproceedings{CVPR23Wang,
author = {Deng-Bao Wang, Lanqing Li, Peilin Zhao, Pheng-Ann Heng, Min-Ling Zhang},
title = {On the Pitfall of Mixup for Uncertainty Calibration},
booktitle = {Proceedings of the 34th IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year = {2023}
}

Contact

If you have any further questions, please feel free to send an e-mail to: wangdb@seu.edu.cn.

About

This is the implementation of our CVPR'23 paper On the Pitfall of Mixup for Uncertainty Calibration. In the paper, we conduct a series of empirical studies showing the calibration issue of Mixup, and propose a new mixup training strategy to address this issue.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages