-
Notifications
You must be signed in to change notification settings - Fork 52
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of https://github.com/dpeerlab/Palantir
# Conflicts: # src/palantir/io.py
- Loading branch information
Showing
3 changed files
with
131 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
import numpy as np | ||
import pandas as pd | ||
import os.path | ||
import fcsparser | ||
import scanpy as sc | ||
from scipy.io import mmread | ||
|
||
|
||
def _clean_up(df): | ||
df = df.loc[df.index[df.sum(axis=1) > 0], :] | ||
df = df.loc[:, df.columns[df.sum() > 0]] | ||
return df | ||
|
||
|
||
def from_csv(counts_csv_file, delimiter=","): | ||
# Read in csv file | ||
df = pd.read_csv(counts_csv_file, sep=delimiter, index_col=0) | ||
clean_df = _clean_up(df) | ||
return clean_df | ||
|
||
|
||
def from_mtx(mtx_file, gene_name_file): | ||
|
||
# Read in mtx file | ||
count_matrix = mmread(mtx_file) | ||
|
||
gene_names = np.loadtxt(gene_name_file, dtype=np.dtype("S")) | ||
gene_names = np.array([gene.decode("utf-8") for gene in gene_names]) | ||
|
||
# remove todense | ||
df = pd.DataFrame(count_matrix.todense(), columns=gene_names) | ||
|
||
return _clean_up(df) | ||
|
||
|
||
def from_10x(data_dir, use_ensemble_id=True): | ||
# loads 10x sparse format data | ||
# data_dir is dir that contains matrix.mtx, genes.tsv and barcodes.tsv | ||
# return_sparse=True -- returns data matrix in sparse format (default = False) | ||
|
||
if data_dir is None: | ||
data_dir = "./" | ||
elif data_dir[len(data_dir) - 1] != "/": | ||
data_dir = data_dir + "/" | ||
|
||
filename_dataMatrix = os.path.expanduser(data_dir + "matrix.mtx") | ||
filename_genes = os.path.expanduser(data_dir + "genes.tsv") | ||
filename_cells = os.path.expanduser(data_dir + "barcodes.tsv") | ||
|
||
# Read in gene expression matrix (sparse matrix) | ||
# Rows = genes, columns = cells | ||
dataMatrix = mmread(filename_dataMatrix) | ||
|
||
# Read in row names (gene names / IDs) | ||
gene_names = np.loadtxt(filename_genes, delimiter="\t", dtype=bytes).astype(str) | ||
if use_ensemble_id: | ||
gene_names = [gene[0] for gene in gene_names] | ||
else: | ||
gene_names = [gene[1] for gene in gene_names] | ||
cell_names = np.loadtxt(filename_cells, delimiter="\t", dtype=bytes).astype(str) | ||
|
||
dataMatrix = pd.DataFrame( | ||
dataMatrix.todense(), columns=cell_names, index=gene_names | ||
) | ||
|
||
# combine duplicate genes | ||
if not use_ensemble_id: | ||
dataMatrix = dataMatrix.groupby(dataMatrix.index).sum() | ||
dataMatrix = dataMatrix.transpose() | ||
|
||
return _clean_up(dataMatrix) | ||
|
||
|
||
def from_10x_HDF5(filename, genome=None): | ||
|
||
ad = sc.read_10x_h5(filename, genome, True) | ||
|
||
dataMatrix = pd.DataFrame(ad.X.todense(), columns=ad.var_names, index=ad.obs_names) | ||
|
||
return _clean_up(dataMatrix) | ||
|
||
|
||
def from_fcs( | ||
cls, | ||
fcs_file, | ||
cofactor=5, | ||
metadata_channels=[ | ||
"Time", | ||
"Event_length", | ||
"DNA1", | ||
"DNA2", | ||
"Cisplatin", | ||
"beadDist", | ||
"bead1", | ||
], | ||
): | ||
|
||
# Parse the fcs file | ||
text, data = fcsparser.parse(fcs_file) | ||
data = data.astype(np.float64) | ||
|
||
# Extract the S and N features (Indexing assumed to start from 1) | ||
# Assumes channel names are in S | ||
no_channels = text["$PAR"] | ||
channel_names = [""] * no_channels | ||
for i in range(1, no_channels + 1): | ||
# S name | ||
try: | ||
channel_names[i - 1] = text["$P%dS" % i] | ||
except KeyError: | ||
channel_names[i - 1] = text["$P%dN" % i] | ||
data.columns = channel_names | ||
|
||
# Metadata and data | ||
metadata_channels = data.columns.intersection(metadata_channels) | ||
data_channels = data.columns.difference(metadata_channels) | ||
# metadata = data[metadata_channels] | ||
data = data[data_channels] | ||
|
||
# Transform if necessary | ||
if cofactor is not None or cofactor > 0: | ||
data = np.arcsinh(np.divide(data, cofactor)) | ||
|
||
return data |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters