Skip to content

🎪 Contains a variety of fitted models to help the systematic testing of other packages

License

Notifications You must be signed in to change notification settings

easystats/circus

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

circus

The Circus of Monsters!

circus contains a variety fitted models to help the systematic testing of other packages.

Installation

Run the following:

install.packages("devtools")
devtools::install_github("easystats/circus")
library("circus")

How to use it

You can use the package in your testthat block by directly calling the models. However, for it to work on travis, it is easier to directly download them from github with the download_model in the insight package:

test_that("my_function_works", {
  library(insight)

  # model <- circus::lmerMod_1  # Local solution
  model <- insight::download_model("lmerMod_1")
  testthat::expect_equal(myFunction(model), 0.333)
})

Contribute

Feel free to add any model you find missing! Any scary creature for the depth of your mind has its place here!

In order to add models, do the following:

  1. Add model creation code in the README.Rmd
  2. Add your model-name in the usethis::use_data() function (last chunk) in the README.Rmd
  3. Add documentation for your model in the R/data.R/ file
  4. Now fit your model and save it to the data-folder, using usethis::use_data(<yourmodel>).
  5. Knit the README.Rmd file to generate the README.md. Since code-chunks are not evaluated, this runs pretty quickly.
  6. Check and build documentation for the package (to generate the .rd-files)
  7. Upload following files to github: /data/<yourmodel.rda>, README.Rmd, README.md, data.R and data.rd.

Note When you build or install the package, it is recommended to do so with following build-options: R CMD INSTALL --no-multiarch --with-keep.source --no-libs --no-data. Furthermore, when building the documentation, make sure to not build the vignettes.

List of Models

Base

# h-tests
htest_1 <- cor.test(iris$Sepal.Width, iris$Sepal.Length, method = "spearman")
htest_2 <- cor.test(iris$Sepal.Width, iris$Sepal.Length, method = "pearson")
htest_3 <- cor.test(iris$Sepal.Width, iris$Sepal.Length, method = "kendall")
htest_4 <- t.test(iris$Sepal.Width, iris$Sepal.Length)
htest_5 <- t.test(iris$Sepal.Width, iris$Sepal.Length, var.equal = TRUE)
htest_6 <- t.test(iris$Sepal.Width, iris$Sepal.Length)
htest_7 <- t.test(mtcars$mpg ~ mtcars$vs)
htest_8 <- t.test(iris$Sepal.Width, mu = 1)

# ANOVAs
anova_1 <- anova(lm(Sepal.Width ~ Species, data=iris))
aov_1 <- aov(Sepal.Width ~ Species, data=iris)
aovlist_1 <- aov(wt ~ cyl + Error(gear), data=mtcars)

data <- iris
data$Cat1 <- rep(c("X", "X", "Y"), length.out = nrow(data))
data$Cat2 <- rep(c("A", "B"), length.out = nrow(data))

aov_2 <- aov(Sepal.Length ~ Species * Cat1 * Cat2, data=data)
anova_2 <- anova(lm(Sepal.Length ~ Species * Cat1 * Cat2, data=data))
aovlist_2 <- aov(Sepal.Length ~ Species * Cat1+ Error(Cat2), data=data)

aov_3 <- aov(Sepal.Length ~ Species / Cat1 * Cat2, data=data)
anova_3 <- anova(lm(Sepal.Length ~ Species / Cat1 * Cat2, data=data))
aovlist_3 <- aov(Sepal.Length ~ Species / Cat1 + Error(Cat2), data=data)


# GLMs
lm_0 <- lm(mpg ~ 1, data = mtcars)
lm_1 <- lm(mpg ~ wt, data = mtcars)
lm_2 <- lm(mpg ~ wt + cyl, data = mtcars)
lm_3 <- lm(mpg ~ wt * cyl, data = mtcars)
lm_4 <- lm(mpg ~ wt + poly(cyl, 2), data = mtcars)
lm_5 <- lm(mpg ~ wt + poly(cyl, 2, raw=TRUE), data = mtcars)
lm_6 <- lm(mpg ~ wt * as.factor(gear), data = mtcars)
lm_7 <- lm(mpg ~ as.factor(gear) / wt, data = mtcars)

set.seed(123)
mtcars$count <- rpois(nrow(mtcars), 2)

glm_0 <- glm(vs ~ 1, data = mtcars, family="binomial")
glm_1 <- glm(vs ~ wt, data = mtcars, family="binomial")
glm_2 <- glm(vs ~ wt + cyl, data = mtcars, family="binomial")
glm_3 <- glm(vs ~ wt * cyl, data = mtcars, family="binomial")
glm_4 <- glm(vs ~ wt + cyl, data = mtcars, family=binomial(link="probit"))
glm_5 <- glm(count ~ wt + cyl, family = "poisson", data = mtcars)

anova_4 <- anova(lm_0, lm_1, lm_2)

lme4

library(lme4)

lmerMod_0 <- lme4::lmer(wt ~ 1 + (1|gear), data = mtcars)
lmerMod_1 <- lme4::lmer(wt ~ cyl + (1|gear), data = mtcars)
lmerMod_2 <- lme4::lmer(wt ~ drat + cyl + (1|gear), data = mtcars)
lmerMod_3 <- lme4::lmer(wt ~ drat * cyl + (1|gear), data = mtcars)
lmerMod_4 <- lme4::lmer(wt ~ drat / cyl + (1|gear), data = mtcars)
lmerMod_5 <- lme4::lmer(Petal.Width ~ Cat1 + (1+Cat1|Species), data=data)

merMod_0 <- lme4::glmer(vs ~ 1 + (1|gear), data = mtcars, family="binomial")
merMod_1 <- lme4::glmer(vs ~ cyl + (1|gear), data = mtcars, family="binomial")
merMod_2 <- lme4::glmer(vs ~ drat + cyl + (1|gear), data = mtcars, family="binomial")
merMod_3 <- lme4::glmer(vs ~ drat * cyl + (1|gear), data = mtcars, family="binomial")
merMod_4 <- lme4::glmer(vs ~ cyl + (1|gear), data = mtcars, family=binomial(link="probit"))

anova_lmerMod_0 <- anova(lmerMod_0)
anova_lmerMod_1 <- anova(lmerMod_1)
anova_lmerMod_2 <- anova(lmerMod_2)
anova_lmerMod_3 <- anova(lmerMod_3)
anova_lmerMod_4 <- anova(lmerMod_4)
anova_lmerMod_5 <- anova(lmerMod_5)

anova_lmerMod_6 <- anova(lmerMod_0, lmerMod_1, lmerMod_2)

glmmTMB

library(glmmTMB)

set.seed(123)
fish <- read.csv("https://stats.idre.ucla.edu/stat/data/fish.csv")
fish$nofish <- as.factor(fish$nofish)
fish$livebait <- as.factor(fish$livebait)
fish$camper <- as.factor(fish$camper)
fish$ID <- sample(1:4, nrow(fish), replace = TRUE)

glmmTMB_1 <- glmmTMB(
  count ~ child + camper + (1 | persons),
  data = fish,
  family = poisson()
)

glmmTMB_2 <- glmmTMB(count ~ mined + (1 | site),
  ziformula =  ~ mined,
  family = poisson,
  data = Salamanders
)

glmmTMB_3 <- glmmTMB(
  count ~ spp + mined + (1 | site),
  ziformula =  ~ spp + mined,
  family = nbinom2,
  data = Salamanders
)

glmmTMB_4 <- glmmTMB(
  count ~ spp + mined + (1 | site),
  ziformula =  ~ spp + mined,
  family = truncated_poisson,
  data = Salamanders
)

data(cbpp, package = "lme4")
glmmTMB_5 <- glmmTMB(
  cbind(incidence, size - incidence) ~ period + (1 | herd),
  data = cbpp,
  family = binomial
)
  
glmmTMB_zi_1 <- glmmTMB(
  count ~ child + camper + (1 | persons),
  ziformula = ~ child + camper + (1 | persons),
  data = fish,
  family = truncated_poisson()
)

glmmTMB_zi_2 <- glmmTMB(
  count ~ child + camper + (1 | persons),
  ziformula = ~ child + livebait + (1 | persons),
  data = fish,
  family = poisson()
)

glmmTMB_zi_3 <- glmmTMB(
  count ~ child + camper + (1 | persons),
  ziformula = ~ child + livebait + (1 | ID),
  dispformula = ~xb,
  data = fish,
  family = truncated_poisson()
)

GLMMadaptive

library("GLMMadaptive")
library("lme4")

data(cbpp)

fish <- read.csv("https://stats.idre.ucla.edu/stat/data/fish.csv")
fish$nofish <- as.factor(fish$nofish)
fish$livebait <- as.factor(fish$livebait)
fish$camper <- as.factor(fish$camper)

GLMMadaptive_zi_1 <- GLMMadaptive::mixed_model(
  count ~ child + camper,
  random = ~ 1 | persons,
  zi_fixed = ~ child + livebait,
  data = fish,
  family = GLMMadaptive::zi.poisson()
)

GLMMadaptive_zi_2 <- GLMMadaptive::mixed_model(
  count ~ child + camper,
  random = ~ 1 | persons,
  zi_fixed = ~ child + livebait,
  zi_random = ~ 1 | persons,
  data = fish,
  family = GLMMadaptive::zi.poisson()
)

GLMMadaptive_1 <- GLMMadaptive::mixed_model(
  cbind(incidence, size - incidence) ~ period,
  random = ~ 1 | herd,
  data = cbpp,
  family = binomial
)

Rstanarm

set.seed(333)

library(rstanarm)

stanreg_lm_0 <- rstanarm::stan_glm(mpg ~ 1, data = mtcars)
stanreg_lm_1 <- rstanarm::stan_glm(mpg ~ wt, data = mtcars)
stanreg_lm_2 <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
stanreg_lm_3 <- rstanarm::stan_glm(mpg ~ wt * cyl, data = mtcars)
stanreg_lm_4 <- rstanarm::stan_glm(mpg ~ wt + poly(cyl, 2), data = mtcars)
stanreg_lm_5 <- rstanarm::stan_glm(mpg ~ wt + poly(cyl, 2, raw=TRUE), data = mtcars)
stanreg_lm_6 <- rstanarm::stan_glm(mpg ~ wt * as.factor(gear), data = mtcars)
stanreg_lm_7 <- rstanarm::stan_glm(mpg ~ as.factor(gear) / wt, data = mtcars)

set.seed(123)
mtcars$count <- rpois(nrow(mtcars), 2)

stanreg_glm_0 <- rstanarm::stan_glm(vs ~ 1, data = mtcars, family="binomial")
stanreg_glm_1 <- rstanarm::stan_glm(vs ~ wt, data = mtcars, family="binomial")
stanreg_glm_2 <- rstanarm::stan_glm(vs ~ wt + cyl, data = mtcars, family="binomial")
stanreg_glm_3 <- rstanarm::stan_glm(vs ~ wt * cyl, data = mtcars, family="binomial")
stanreg_glm_4 <- rstanarm::stan_glm(vs ~ wt + cyl, data = mtcars, family=binomial(link="probit"))
stanreg_glm_5 <- rstanarm::stan_glm(count ~ wt + cyl, data = mtcars, family="poisson")
stanreg_glm_6 <- rstanarm::stan_glm(Sepal.Width ~ Species * Petal.Length, data = iris)

stanreg_lmerMod_0 <- rstanarm::stan_lmer(wt ~ 1 + (1|gear), data = mtcars)
stanreg_lmerMod_1 <- rstanarm::stan_lmer(wt ~ cyl + (1|gear), data = mtcars)
stanreg_lmerMod_2 <- rstanarm::stan_lmer(wt ~ drat + cyl + (1|gear), data = mtcars)
stanreg_lmerMod_3 <- rstanarm::stan_lmer(wt ~ drat * cyl + (1|gear), data = mtcars)
stanreg_lmerMod_4 <- rstanarm::stan_lmer(wt ~ drat / cyl + (1|gear), data = mtcars)
stanreg_lmerMod_5 <- rstanarm::stan_lmer(Petal.Width ~ Cat1 + (1+Cat1|Species), data=data)

stanreg_merMod_0 <- rstanarm::stan_glmer(vs ~ 1 + (1|gear), data = mtcars, family="binomial")
stanreg_merMod_1 <- rstanarm::stan_glmer(vs ~ cyl + (1|gear), data = mtcars, family="binomial")
stanreg_merMod_2 <- rstanarm::stan_glmer(vs ~ drat + cyl + (1|gear), data = mtcars, family="binomial")
stanreg_merMod_3 <- rstanarm::stan_glmer(vs ~ drat * cyl + (1|gear), data = mtcars, family="binomial")
stanreg_merMod_4 <- rstanarm::stan_glmer(vs ~ cyl + (1|gear), data = mtcars, family=binomial(link="probit"))
stanreg_merMod_5 <- stan_glmer(
  cbind(incidence, size - incidence) ~ size + period + (1 | herd),
  data = lme4::cbpp, family = binomial, QR = TRUE,
  chains = 2, cores = 1, seed = 12345, iter = 500, refresh = 0
)


stanreg_meanfield_lm_1 <- update(stanreg_lm_1, algorithm="meanfield")
stanreg_fullrank_lm_1 <- update(stanreg_lm_1, algorithm="fullrank")


stanreg_gamm4_1 <- stan_gamm4(Sepal.Width ~ s(Petal.Length), data=iris)
stanreg_gamm4_2 <- stan_gamm4(Sepal.Width ~ Species + s(Petal.Length), data=iris)
stanreg_gamm4_3 <- stan_gamm4(Sepal.Width ~ Species + s(Petal.Length), random = ~ (1 | Cat1), data=data)

BRMS

library(lme4)
library(brms)
library(dplyr)

data(sleepstudy)
data(mtcars)
data(epilepsy)
data(jobs, package = "mediation")

set.seed(123)
epilepsy$visit <- as.numeric(epilepsy$visit)
epilepsy$Base2 <- sample(epilepsy$Base, nrow(epilepsy), replace = TRUE)
mtcars$cyl_ord <- as.ordered(mtcars$cyl)
mtcars$gear_fct <- as.ordered(mtcars$gear)
zinb <- read.csv("http://stats.idre.ucla.edu/stat/data/fish.csv")

dat <- read.table(header = TRUE, text = "
      n r r/n group treat c2 c1 w
      62 3 0.048387097 1 0 0.1438 1.941115288 1.941115288
      96 1 0.010416667 1 0 0.237 1.186583128 1.186583128
      17 0 0 0 0 0.2774 1.159882668 3.159882668
      41 2 0.048780488 1 0 0.2774 1.159882668 3.159882668
      212 170 0.801886792 0 0 0.2093 1.133397521 1.133397521
      143 21 0.146853147 1 1 0.1206 1.128993008 1.128993008
      143 0 0 1 1 0.1707 1.128993008 2.128993008
      143 33 0.230769231 0 1 0.0699 1.128993008 1.128993008
      73 62 1.260273973 0 1 0.1351 1.121927228 1.121927228
      73 17 0.232876712 0 1 0.1206 1.121927228 1.121927228")
dat$treat <- as.factor(dat$treat)

set.seed(123)
sleepstudy$grp <- sample(1:5, size = 180, replace = TRUE)
sleepstudy$cat <- as.factor(sample(1:5, size = 180, replace = TRUE))
sleepstudy$Reaction_d <-
  ifelse(sleepstudy$Reaction < median(sleepstudy$Reaction), 0, 1)
sleepstudy <- sleepstudy %>%
  group_by(grp) %>%
  mutate(subgrp = sample(1:15, size = n(), replace = TRUE))
zinb$count2 <- rpois(250, 5)
zinb$count2[sample(1:250, 100, replace = FALSE)] <- 0
bprior1 <- prior(student_t(5, 0, 10), class = b) + prior(cauchy(0, 2), class = sd)

brms_1 <- brm(mpg ~ wt + cyl, data = mtcars)
brms_2 <- brm(
  r | trials(n) ~ treat * c2, 
  data = dat, 
  family = binomial(link = logit), 
  chains = 1, iter = 500
)

brms_ordinal_1 <- brm(cyl_ord ~ mpg, data = mtcars, family = cumulative())
brms_ordinal_1_wt <- brm(cyl_ord | weights(wt) ~ mpg, data = mtcars, family = cumulative())

brms_categorical_1_num <- brm(gear ~ mpg, data = mtcars, family = categorical())
brms_categorical_1_fct <- brm(gear_fct ~ mpg, data = mtcars, family = categorical())
brms_categorical_1_wt <- brm(gear | weights(wt) ~ mpg, data = mtcars, family = categorical())

brms_mixed_1 <- brm(mpg ~ wt + (1 | cyl) + (1 + wt | gear), data = mtcars)
brms_mixed_2 <- brm(Reaction ~ Days + (1 + Days | Subject), data = sleepstudy)
brms_mixed_3 <- brm(Reaction ~ Days + (1 | grp / subgrp) + (1 | Subject), data = sleepstudy)
brms_mixed_3 <- brm(Petal.Length ~ Petal.Width + (1 | Species), data = iris)
brms_mixed_5 <- brm(Reaction_d ~ Days + cat + (1 | Subject), data = sleepstudy, family = bernoulli())
brms_mixed_6 <- brm(
  count ~ Age + Base * Trt + (1 | patient),
  data = epilepsy,
  family = poisson(),
  prior = bprior1,
  chains = 1,
  iter = 500
)

brms_mv_1 <- brm(cbind(cyl, gear, carb) ~ wt + hp, data = mtcars)
f1 <- bf(mpg ~ wt + disp + cyl + hp + (1 |CAR| gear))
f2 <- bf(wt ~ disp + cyl + hp + (1 |CAR| gear))
brms_mv_2 <- brm(f1 + f2 + set_rescor(FALSE), data = mtcars)
f1 <- bf(Base ~ Age + count + (1 |ID| patient))
f2 <- bf(Base2 ~ Age + Trt + (1 |ID| patient))
brms_mv_3 <- brm(f1 + f2 + set_rescor(FALSE), data = epilepsy)
f1 <- bf(Sepal.Length ~ Petal.Length + Sepal.Width + Species)
f2 <- bf(Sepal.Width ~ Species)
brms_mv_4 <- brm(f1 + f2 + set_rescor(FALSE), data = iris, chains = 1, iter = 500)
bf1 <- bf(count ~ child + camper + (1 | persons), zi ~ camper + (1 | persons))
bf2 <- bf(count2 ~ child + livebait + (1 | persons), zi ~ child + (1 | persons))
brms_mv_5 <- brm(bf1 + bf2, data = zinb, family = zero_inflated_poisson(), chains = 1, iter = 500)
f1 <- bf(job_seek ~ treat + econ_hard + sex + age)
f2 <- bf(depress2 ~ treat + job_seek + econ_hard + sex + age)
brms_mv_5 <- brm(f1 + f2 + set_rescor(FALSE), data = jobs)

brms_zi_1 <- brm(bf(count ~ persons + child + camper, zi ~ child + camper), data = zinb, family = zero_inflated_poisson())
brms_zi_2 <- brm(bf(count ~ persons + child + camper + (1 | persons), zi ~ child + camper + (1 | persons)), data = zinb, family = zero_inflated_poisson())
brms_zi_3 <- brm(
  bf(
    count ~ child + camper + (1 | persons),
    zi ~ child + camper + (1 | persons)
  ),
  data = zinb,
  family = zero_inflated_poisson(),
  chains = 1,
  iter = 500
)

brms_4bf_1 <- brm(Sepal.Length ~ 1, data = iris, save_all_pars = TRUE)
brms_4bf_2 <- brm(Sepal.Length ~ Species, data = iris, save_all_pars = TRUE)
brms_4bf_3 <- brm(Sepal.Length ~ Petal.Length, data = iris, save_all_pars = TRUE)
brms_4bf_4 <- brm(Sepal.Length ~ Species + Petal.Length, data = iris, save_all_pars = TRUE)
brms_4bf_5 <- brm(Sepal.Length ~ Species * Petal.Length, data = iris, save_all_pars = TRUE)

Other packages

library(betareg)
data("GasolineYield")
data("FoodExpenditure")

betareg_1 <- betareg(yield ~ batch + temp, data = GasolineYield)
betareg_2 <- betareg(I(food/income) ~ income + persons, data = FoodExpenditure)

library(AER)
library(censReg)
data("Affairs", package = "AER")

censReg_1 <- censReg(affairs ~ age + yearsmarried + religiousness + occupation + rating, data = Affairs)

data(CigarettesSW)
CigarettesSW$rprice <- with(CigarettesSW, price / cpi)
CigarettesSW$rincome <- with(CigarettesSW, income / population / cpi)
CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax) / cpi)

ivreg_1 <- ivreg(
  log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax / cpi), 
  data = CigarettesSW, 
  subset = year == "1995"
)

library(ordinal)
data(wine)
clm_1 <- clm(rating ~ temp * contact, data = wine)
clm2_1 <- clm2(rating ~ temp * contact, data = wine)

Save

usethis::use_data(htest_1,
                  htest_2,
                  htest_3,
                  htest_4,
                  htest_5,
                  htest_6,
                  htest_7,
                  htest_8,
                  
                  anova_1,
                  aov_1,
                  aovlist_1,
                  anova_2,
                  aov_2,
                  aovlist_2,
                  anova_3,
                  aov_3,
                  aovlist_3,
                  anova_4,
                  
                  lm_0,
                  lm_1,
                  lm_2,
                  lm_3,
                  lm_4,
                  lm_5,
                  lm_6,
                  lm_7,
                  glm_0,
                  glm_1,
                  glm_2,
                  glm_3,
                  glm_4,
                  glm_5,
                  
                  lmerMod_0,
                  lmerMod_1,
                  lmerMod_2,
                  lmerMod_3,
                  lmerMod_4,
                  lmerMod_5,
                  merMod_0,
                  merMod_1,
                  merMod_2,
                  merMod_3,
                  merMod_4,
                  
                  anova_lmerMod_0,
                  anova_lmerMod_1,
                  anova_lmerMod_2,
                  anova_lmerMod_3,
                  anova_lmerMod_4,
                  anova_lmerMod_5,
                  anova_lmerMod_6,
                  
                  glmmTMB_1,
                  glmmTMB_2,
                  glmmTMB_3,
                  glmmTMB_4,
                  glmmTMB_5,
                  
                  glmmTMB_zi_1,
                  glmmTMB_zi_2,
                  glmmTMB_zi_3,
                  
                  GLMMadaptive_1,
                  GLMMadaptive_zi_1,
                  GLMMadaptive_zi_2,
                  
                  stanreg_lm_0,
                  stanreg_lm_1,
                  stanreg_lm_2,
                  stanreg_lm_3,
                  stanreg_lm_4,
                  stanreg_lm_5,
                  stanreg_lm_6,
                  stanreg_lm_7,
                  stanreg_glm_0,
                  stanreg_glm_1,
                  stanreg_glm_2,
                  stanreg_glm_3,
                  stanreg_glm_4,
                  stanreg_glm_5,
                  stanreg_glm_6,
                  stanreg_lmerMod_0,
                  stanreg_lmerMod_1,
                  stanreg_lmerMod_2,
                  stanreg_lmerMod_3,
                  stanreg_lmerMod_4,
                  stanreg_lmerMod_5,
                  stanreg_merMod_0,
                  stanreg_merMod_1,
                  stanreg_merMod_2,
                  stanreg_merMod_3,
                  stanreg_merMod_4,
                  stanreg_merMod_5,
                  stanreg_meanfield_lm_1,
                  stanreg_fullrank_lm_1,
                  
                  stanreg_gamm4_1,
                  stanreg_gamm4_2,
                  stanreg_gamm4_3,
                  
                  brms_1,
                  brms_2,
                  
                  brms_mixed_1,
                  brms_mixed_2,
                  brms_mixed_3,
                  brms_mixed_4,
                  brms_mixed_5,
                  brms_mixed_6,
                  
                  brms_mv_1,
                  brms_mv_2,
                  brms_mv_3,
                  brms_mv_4,
                  brms_mv_5,
                  brms_mv_6,
                  
                  brms_zi_1,
                  brms_zi_2,
                  brms_zi_3,
                  
                  brms_4bf_1,
                  brms_4bf_2,
                  brms_4bf_3,
                  brms_4bf_4,
                  brms_4bf_5,
                  
                  brms_ordinal_1,
                  brms_ordinal_1_wt,
                  
                  brms_categorical_1_num,
                  brms_categorical_1_fct,
                  brms_categorical_1_wt,
                  
                  betareg_1,
                  betareg_2,
                  censReg_1,
                  ivreg_1,
                  clm_1,
                  clm2_1,
                  
                  overwrite=TRUE)

About

🎪 Contains a variety of fitted models to help the systematic testing of other packages

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages