This repository provides training and testing scripts for the article Campanella et al. 2019.
- MIL-Train : Training MIL
- MIL-Test : Inference MIL
- RNN_train : Train RNN
- RNN_Test : Test RNN
- CheckSet.py: Open an check all images in {Train,Val}.json
- CheckQuick.py: Open an check all images in {Train,Val}.json
- Untitled.ipynb : Split Typical/Atypical To rename
- Untitled1.ipynb : Experience data augmentation To rename
- Res*.ipynb : Jupyter notebook model summarizing the results
- {Train*,Val*}.json: Files need for torch DataLoader
{ 'Slides':['TNE1095' , 'TNE1411', ...],
'Tiles' : [[TNE1095/Tiles1095_x_y.jpg, ...] [TNE1411/TNE1411_x_y.jpg, ...] ],
'Targets': [0, 0, 1 ... ] }
- MIL:
- DataLoader
- Data augmentation:
- Removed the normizalition
- Add color augmentation
- Output modification:
- Save learning rate
- Calculation of Training error, FPR, FNR
- Training with learning rate schedule
- Possibility to load a graph
- RNN:
- Add Attention layer
Try to locate atypical area.
- ~1M Tiles 512x512px Vahadane color normalization Typical/Atypical (see Untitled.ipynb).
- Epoch 25
- Huge instability
- From ImageNet
- Epoch 30
- Huge instability
- From exp A
-
- RNN
See xlsx file to get a summary
- ModelName:
- Checkpoint_best.pth
- convergence.csv
- prediction.csv // From MIL_test.py
- probability.csv // From MIL_test.py
- *.ipynb // results summary
- BestTiles:
- SampleName_{0,1}
- Normal
- Tiles_{}.jpg
- Tumour
- TIles_{}.jpg
- Normal
- SampleName_{0,1}
- ResMapVal
- ResMapTrain