Dataset tools for working with the SceneNet RGB-D dataset and converting its raw trajectory data to a ROS bag.
-
Clone this and the pySceneNetRGBD repositories to the
src
folder of your catkin workspace, build your workspace and source it.cd <catkin_ws>/src git clone git@github.com:ethz-asl/scenenet_ros_tools.git git clone git@github.com:jmccormac/pySceneNetRGBD.git catkin build source <catkin_ws>/devel/setup.bash
-
Download the SceneNet training (263GB split into 17 tarballs of 16GB each) and/or validation set (15GB) with the respective protobuf files to the
data
directory of thepySceneNetRGBD
folder, then runmake
in the rootpySceneNetRGBD
folder to generate the protobuf description.cd pySceneNetRGBD mkdir data && cd data # Training set wget https://www.doc.ic.ac.uk/~bjm113/scenenet_data/train_protobufs.tar.gz train_protobufs.tar.gz tar -xvzf train_protobufs.tar.gz --strip=1 wget https://www.doc.ic.ac.uk/~bjm113/scenenet_data/train_split/train_0.tar.gz train_0.tar.gz tar -xvzf train_0.tar.gz wget https://www.doc.ic.ac.uk/~bjm113/scenenet_data/train_split/train_1.tar.gz train_1.tar.gz tar -xvzf train_1.tar.gz ... # Validation set wget http://www.doc.ic.ac.uk/~bjm113/scenenet_data/scenenet_rgbd_val.pb scenenet_rgbd_val.pb wget http://www.doc.ic.ac.uk/~bjm113/scenenet_data/SceneNetRGBD-val.tar.gz SceneNetRGBD-val.tar.gz tar -xvzf SceneNetRGBD-val.tar.gz cd .. && make
-
Make the Python script executable and run it as a ROS node to convert data from a SceneNet trajectory to a rosbag. The rosbag will contain a sequence of RGB and depth images, ground truth 2D instance label images, and relative transforms. Optionally, it can contain colorized ground truth 2D instance label images, colored pointclouds of the scene, and colored pointclouds of ground truth instance segments.
cd ../scenenet_ros_tools && chmod +x nodes/scenenet_to_rosbag.py rosrun scenenet_ros_tools scenenet_to_rosbag.py --scenenet-path PATH/TO/pySceneNetRGBD --dataset-type DATASET_TYPE --trajectory INDEX [--train-set-split N] [--limit NUM] [--output-bag NAME]
Example for a trajectory from the training set:
rosrun scenenet_ros_tools scenenet_to_rosbag.py --scenenet-path ../pySceneNetRGBD/ --dataset-type train --train-set-split 0 --trajectory 1 --output-bag scenenet_train_0_traj_1.bag
Example for a trajectory from the validation set:
rosrun scenenet_ros_tools scenenet_to_rosbag.py --scenenet-path ../pySceneNetRGBD/ --dataset-type val --trajectory 1 --output-bag scenenet_val_traj_1.bag
The output bag contains the following topics:
# RGB and depth images /camera/rgb/camera_info : sensor_msgs/CameraInfo /camera/rgb/image_raw : sensor_msgs/Image /camera/depth/camera_info : sensor_msgs/CameraInfo /camera/depth/image_raw : sensor_msgs/Image # Ground truth 2D instance segmentation image /camera/instances/image_raw : sensor_msgs/Image # Ground truth colorized 2D instance segmentation image [Disabled by default] /camera/instances/image_rgb : sensor_msgs/Image # Colored pointclouds of ground truth instance segments [Disabled by default] /scenenet_node/object_segment : sensor_msgs/PointCloud2 # Colored pointcloud of the scene [Disabled by default] /scenenet_node/scene : sensor_msgs/PointCloud2 # Transform from /scenenet_camera_frame to /world /tf : tf/tfMessage