-
Notifications
You must be signed in to change notification settings - Fork 135
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
`torch.bmm` doesn't support fp8 and `torch._scaled_mm` doesn't support 3d, so I write this one. @yzh119 cc @merrymercy @Ying1123 @ispobock Thanks @yzh119 for assisting with debug. AType: fp8 e4m3, fp8 e5m2 BType: fp8 e4m3, fp8 e5m2 DType: bf16, fp16 Does not support both AType and BType fp8 e5m2. ref https://docs.nvidia.com/cuda/cublas/#cublasltmatmul ```python3 pytest python/tests/test_bmm_fp8.py ``` works on H100 ``` =================================================================================== test session starts =================================================================================== platform linux -- Python 3.12.4, pytest-8.3.2, pluggy-1.5.0 rootdir: /flashinfer collected 8 items python/tests/test_bmm_fp8.py ...s...s [100%] ============================================================================== 6 passed, 2 skipped in 2.16s =============================================================================== ``` --------- Co-authored-by: Zihao Ye <expye@outlook.com>
- Loading branch information
Showing
10 changed files
with
371 additions
and
9 deletions.
There are no files selected for viewing
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,200 @@ | ||
/* | ||
* Copyright (c) 2024 by FlashInfer team. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
#ifndef FLASHINFER_BMM_FP8_CUH_ | ||
#define FLASHINFER_BMM_FP8_CUH_ | ||
|
||
#include <ATen/cuda/Exceptions.h> | ||
#include <c10/cuda/CUDACachingAllocator.h> | ||
#include <cublasLt.h> | ||
#include <cuda_fp8.h> | ||
#include <torch/extension.h> | ||
|
||
#include <stdexcept> | ||
#include <type_traits> | ||
|
||
namespace flashinfer { | ||
|
||
namespace bmm_fp8 { | ||
|
||
template <typename T, cublasStatus_t (*destructor)(T*)> | ||
struct CuBlasLtDeleter { | ||
void operator()(T* x) { | ||
if (x != nullptr) { | ||
TORCH_CUDABLAS_CHECK(destructor(x)); | ||
} | ||
} | ||
}; | ||
|
||
template <typename T, cublasStatus_t (*destructor)(T*)> | ||
class CuBlasLtDescriptor { | ||
public: | ||
T* descriptor() const { return descriptor_.get(); } | ||
T* descriptor() { return descriptor_.get(); } | ||
|
||
protected: | ||
std::unique_ptr<T, CuBlasLtDeleter<T, destructor>> descriptor_; | ||
}; | ||
|
||
class CuBlasLtMatmulDescriptor | ||
: public CuBlasLtDescriptor<cublasLtMatmulDescOpaque_t, &cublasLtMatmulDescDestroy> { | ||
public: | ||
CuBlasLtMatmulDescriptor(cublasComputeType_t compute_type, cudaDataType_t scale_type) { | ||
cublasLtMatmulDesc_t raw_descriptor = nullptr; | ||
TORCH_CUDABLAS_CHECK(cublasLtMatmulDescCreate(&raw_descriptor, compute_type, scale_type)); | ||
descriptor_.reset(raw_descriptor); | ||
} | ||
template <typename T> | ||
inline void setAttribute(cublasLtMatmulDescAttributes_t attr, const T value) { | ||
TORCH_CUDABLAS_CHECK(::cublasLtMatmulDescSetAttribute(descriptor(), attr, &value, sizeof(T))); | ||
} | ||
}; | ||
|
||
class CuBlasLtMatrixLayout | ||
: public CuBlasLtDescriptor<cublasLtMatrixLayoutOpaque_t, &cublasLtMatrixLayoutDestroy> { | ||
public: | ||
CuBlasLtMatrixLayout(cudaDataType_t type, uint64_t rows, uint64_t cols, int64_t ld, | ||
bool t = false) { | ||
cublasLtMatrixLayout_t raw_descriptor = nullptr; | ||
TORCH_CUDABLAS_CHECK( | ||
cublasLtMatrixLayoutCreate(&raw_descriptor, type, t ? cols : rows, t ? rows : cols, ld)); | ||
descriptor_.reset(raw_descriptor); | ||
} | ||
template <typename T> | ||
inline void setAttribute(cublasLtMatrixLayoutAttribute_t attr, const T value) { | ||
TORCH_CUDABLAS_CHECK(::cublasLtMatrixLayoutSetAttribute(descriptor(), attr, &value, sizeof(T))); | ||
} | ||
}; | ||
|
||
class CuBlasLtMatmulPreference : public CuBlasLtDescriptor<cublasLtMatmulPreferenceOpaque_t, | ||
&cublasLtMatmulPreferenceDestroy> { | ||
public: | ||
CuBlasLtMatmulPreference() { | ||
cublasLtMatmulPreference_t raw_descriptor = nullptr; | ||
TORCH_CUDABLAS_CHECK(cublasLtMatmulPreferenceCreate(&raw_descriptor)); | ||
descriptor_.reset(raw_descriptor); | ||
} | ||
template <typename T> | ||
inline void setAttribute(cublasLtMatmulPreferenceAttributes_t attr, const T value) { | ||
TORCH_CUDABLAS_CHECK( | ||
::cublasLtMatmulPreferenceSetAttribute(descriptor(), attr, &value, sizeof(T))); | ||
} | ||
}; | ||
|
||
template <typename T> | ||
cudaDataType_t get_cuda_data_type() { | ||
if constexpr (std::is_same_v<T, __nv_fp8_e4m3>) { | ||
return CUDA_R_8F_E4M3; | ||
} else if constexpr (std::is_same_v<T, __nv_fp8_e5m2>) { | ||
return CUDA_R_8F_E5M2; | ||
} else if constexpr (std::is_same_v<T, __nv_bfloat16>) { | ||
return CUDA_R_16BF; | ||
} else if constexpr (std::is_same_v<T, half>) { | ||
return CUDA_R_16F; | ||
} else { | ||
throw std::runtime_error("Unsupported type"); | ||
} | ||
} | ||
|
||
template <typename AT, typename BT, typename DT> | ||
void bmm_fp8_internal_cublaslt(const AT* A, const BT* B, DT* D, int batch_size, int m, int n, int k, | ||
const float* A_scale, const float* B_scale) { | ||
const void* A_scale_ptr = static_cast<const void*>(A_scale); | ||
const void* B_scale_ptr = static_cast<const void*>(B_scale); | ||
auto matmul_desp = CuBlasLtMatmulDescriptor(CUBLAS_COMPUTE_32F, CUDA_R_32F); | ||
matmul_desp.setAttribute(CUBLASLT_MATMUL_DESC_TRANSA, CUBLAS_OP_T); | ||
matmul_desp.setAttribute(CUBLASLT_MATMUL_DESC_TRANSB, CUBLAS_OP_N); | ||
int8_t fast_accum = 1; | ||
matmul_desp.setAttribute(CUBLASLT_MATMUL_DESC_FAST_ACCUM, fast_accum); | ||
|
||
matmul_desp.setAttribute(CUBLASLT_MATMUL_DESC_A_SCALE_POINTER, A_scale_ptr); | ||
matmul_desp.setAttribute(CUBLASLT_MATMUL_DESC_B_SCALE_POINTER, B_scale_ptr); | ||
|
||
cudaDataType_t a_type = get_cuda_data_type<AT>(); | ||
cudaDataType_t b_type = get_cuda_data_type<BT>(); | ||
cudaDataType_t d_type = get_cuda_data_type<DT>(); | ||
if (std::is_same_v<AT, __nv_fp8_e5m2> && std::is_same_v<BT, __nv_fp8_e5m2>) { | ||
throw std::runtime_error("Unsupported combination: both A and B are e5m2"); | ||
} | ||
|
||
auto a_desp = CuBlasLtMatrixLayout(a_type, m, k, k, true); | ||
auto b_desp = CuBlasLtMatrixLayout(b_type, k, n, k); | ||
auto d_desp = CuBlasLtMatrixLayout(d_type, m, n, m); | ||
|
||
if (batch_size > 1) { | ||
int64_t stride_a = m * k; | ||
int64_t stride_b = k * n; | ||
int64_t stride_d = m * n; | ||
a_desp.setAttribute(CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, batch_size); | ||
a_desp.setAttribute(CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, stride_a); | ||
b_desp.setAttribute(CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, batch_size); | ||
b_desp.setAttribute(CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, stride_b); | ||
d_desp.setAttribute(CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, batch_size); | ||
d_desp.setAttribute(CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, stride_d); | ||
} | ||
|
||
CuBlasLtMatmulPreference preference; | ||
size_t workspace_size = 1024 * 1024; // 1 MiB | ||
preference.setAttribute(CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, workspace_size); | ||
auto& allocator = *::c10::cuda::CUDACachingAllocator::get(); | ||
auto workspace = allocator.allocate(workspace_size); | ||
cublasLtMatmulHeuristicResult_t heuristic_result = {}; | ||
int returned_result = 0; | ||
auto lt_handle = at::cuda::getCurrentCUDABlasLtHandle(); | ||
TORCH_CUDABLAS_CHECK(cublasLtMatmulAlgoGetHeuristic( | ||
lt_handle, matmul_desp.descriptor(), a_desp.descriptor(), b_desp.descriptor(), | ||
d_desp.descriptor(), d_desp.descriptor(), preference.descriptor(), 1, &heuristic_result, | ||
&returned_result)); | ||
if (returned_result == 0) { | ||
TORCH_CUDABLAS_CHECK(CUBLAS_STATUS_NOT_SUPPORTED); | ||
} | ||
|
||
const float alpha = 1.0f; | ||
const float beta = 0.0f; | ||
cublasStatus_t status = cublasLtMatmul( | ||
lt_handle, matmul_desp.descriptor(), &alpha, A, a_desp.descriptor(), B, b_desp.descriptor(), | ||
&beta, nullptr, d_desp.descriptor(), D, d_desp.descriptor(), &heuristic_result.algo, | ||
workspace.mutable_get(), workspace_size, at::cuda::getCurrentCUDAStream()); | ||
TORCH_CHECK(status == CUBLAS_STATUS_SUCCESS, at::cuda::blas::_cublasGetErrorEnum(status)); | ||
} | ||
|
||
template void bmm_fp8_internal_cublaslt<__nv_fp8_e4m3, __nv_fp8_e4m3, __nv_bfloat16>( | ||
const __nv_fp8_e4m3* A, const __nv_fp8_e4m3* B, __nv_bfloat16* D, int batch_size, int m, int n, | ||
int k, const float* A_scale, const float* B_scale); | ||
|
||
template void bmm_fp8_internal_cublaslt<__nv_fp8_e4m3, __nv_fp8_e4m3, half>( | ||
const __nv_fp8_e4m3* A, const __nv_fp8_e4m3* B, half* D, int batch_size, int m, int n, int k, | ||
const float* A_scale, const float* B_scale); | ||
|
||
template void bmm_fp8_internal_cublaslt<__nv_fp8_e4m3, __nv_fp8_e5m2, __nv_bfloat16>( | ||
const __nv_fp8_e4m3* A, const __nv_fp8_e5m2* B, __nv_bfloat16* D, int batch_size, int m, int n, | ||
int k, const float* A_scale, const float* B_scale); | ||
|
||
template void bmm_fp8_internal_cublaslt<__nv_fp8_e4m3, __nv_fp8_e5m2, half>( | ||
const __nv_fp8_e4m3* A, const __nv_fp8_e5m2* B, half* D, int batch_size, int m, int n, int k, | ||
const float* A_scale, const float* B_scale); | ||
|
||
template void bmm_fp8_internal_cublaslt<__nv_fp8_e5m2, __nv_fp8_e4m3, __nv_bfloat16>( | ||
const __nv_fp8_e5m2* A, const __nv_fp8_e4m3* B, __nv_bfloat16* D, int batch_size, int m, int n, | ||
int k, const float* A_scale, const float* B_scale); | ||
|
||
template void bmm_fp8_internal_cublaslt<__nv_fp8_e5m2, __nv_fp8_e4m3, half>( | ||
const __nv_fp8_e5m2* A, const __nv_fp8_e4m3* B, half* D, int batch_size, int m, int n, int k, | ||
const float* A_scale, const float* B_scale); | ||
|
||
} // namespace bmm_fp8 | ||
} // namespace flashinfer | ||
|
||
#endif // FLASHINFER_BMM_FP8_CUH_ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
/* | ||
* Copyright (c) 2024 by FlashInfer team. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <ATen/cuda/CUDAContext.h> | ||
#include <torch/extension.h> | ||
|
||
#include <flashinfer/bmm_fp8.cuh> | ||
|
||
#include "flashinfer_ops.h" | ||
#include "pytorch_extension_utils.h" | ||
|
||
using namespace flashinfer; | ||
|
||
void bmm_fp8(const torch::Tensor& A, const torch::Tensor& B, torch::Tensor& D, | ||
torch::Tensor& A_scale, torch::Tensor& B_scale) { | ||
TORCH_CHECK(A.is_cuda(), "A must be a CUDA tensor"); | ||
TORCH_CHECK(B.is_cuda(), "B must be a CUDA tensor"); | ||
TORCH_CHECK(D.is_cuda(), "D must be a CUDA tensor"); | ||
TORCH_CHECK(A.dim() == 3, "Expected 3D tensor for A"); | ||
TORCH_CHECK(B.dim() == 3, "Expected 3D tensor for B"); | ||
TORCH_CHECK(D.dim() == 3, "Expected 3D tensor for D"); | ||
TORCH_CHECK(A.size(0) == B.size(0) && A.size(0) == D.size(0), "Batch sizes must match"); | ||
TORCH_CHECK(A.size(2) == B.size(1), "Incompatible matrix sizes"); | ||
TORCH_CHECK(A.size(1) == D.size(1) && B.size(2) == D.size(2), | ||
"Result tensor has incorrect shape"); | ||
TORCH_CHECK(A.scalar_type() == torch::kFloat8_e4m3fn || A.scalar_type() == torch::kFloat8_e5m2, | ||
"A must be Float8_e4m3fn or Float8_e5m2"); | ||
TORCH_CHECK(B.scalar_type() == torch::kFloat8_e4m3fn || B.scalar_type() == torch::kFloat8_e5m2, | ||
"B must be Float8_e4m3fn or Float8_e5m2"); | ||
TORCH_CHECK(D.scalar_type() == torch::kBFloat16 || D.scalar_type() == torch::kHalf, | ||
"D must be BFloat16 or Half"); | ||
|
||
TORCH_CHECK(A_scale.scalar_type() == torch::kFloat32 && B_scale.scalar_type() == torch::kFloat32, | ||
"A_scale and B_scale must be Float32"); | ||
|
||
auto batch_size = A.size(0); | ||
auto m = A.size(1); | ||
auto k = A.size(2); | ||
auto n = B.size(2); | ||
|
||
// PyTorch is row major by default. cuBLASLt is column major by default. | ||
// We need row major D as expected. | ||
// A ^ T * B = D, so D ^ T = B ^ T * A | ||
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP8(B.scalar_type(), b_type, [&] { | ||
return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP8(A.scalar_type(), a_type, [&] { | ||
return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(D.scalar_type(), d_type, [&] { | ||
flashinfer::bmm_fp8::bmm_fp8_internal_cublaslt( | ||
static_cast<b_type*>(B.data_ptr()), static_cast<a_type*>(A.data_ptr()), | ||
static_cast<d_type*>(D.data_ptr()), batch_size, n, m, k, | ||
static_cast<float*>(B_scale.data_ptr()), static_cast<float*>(A_scale.data_ptr())); | ||
return true; | ||
}); | ||
}); | ||
}); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.