Lightning-Fast Cluster Computing - http://www.spark-project.org/
# fxrc @ popos in ~/SourceCode/spark-0.5 on git:main o [14:12:42]
$ scc .
───────────────────────────────────────────────────────────────────────────────
Language Files Lines Blanks Comments Code Complexity
───────────────────────────────────────────────────────────────────────────────
Scala 81 10683 1605 1222 7856 1094
XML 66 868 9 0 859 0
Shell 2 7 0 2 5 0
gitignore 2 94 17 34 43 0
BASH 1 74 12 11 51 11
Markdown 1 72 28 0 44 0
───────────────────────────────────────────────────────────────────────────────
Total 153 11798 1671 1269 8858 1105
───────────────────────────────────────────────────────────────────────────────
Estimated Cost to Develop (organic) $266,868
Estimated Schedule Effort (organic) 8.325440 months
Estimated People Required (organic) 2.847780
───────────────────────────────────────────────────────────────────────────────
Processed 393946 bytes, 0.394 megabytes (SI)
───────────────────────────────────────────────────────────────────────────────
You can find the latest Spark documentation, including a programming guide, on the project wiki at http://github.com/mesos/spark/wiki. This file only contains basic setup instructions.
Spark requires Scala 2.9.2. The project is built using Simple Build Tool (SBT), which is packaged with it. To build Spark and its example programs, run:
sbt/sbt package
To run Spark, you will need to have Scala's bin in your PATH
, or you
will need to set the SCALA_HOME
environment variable to point to where
you've installed Scala. Scala must be accessible through one of these
methods on Mesos slave nodes as well as on the master.
To run one of the examples, first run sbt/sbt package
to build them. Then use ./run <class> <params>
. For example:
./run spark.examples.SparkLR local[2]
will run the Logistic Regression example locally on 2 CPUs.
Each of the example programs prints usage help if no params are given.
All of the Spark samples take a <host>
parameter that is the Mesos master
to connect to. This can be a Mesos URL, or "local" to run locally with one
thread, or "local[N]" to run locally with N threads.
Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported
storage systems. Because the HDFS API has changed in different versions of
Hadoop, you must build Spark against the same version that your cluster runs.
You can change the version by setting the HADOOP_VERSION
variable at the top
of project/SparkBuild.scala
, then rebuilding Spark.
Spark can be configured through two files: conf/java-opts
and
conf/spark-env.sh
.
In java-opts
, you can add flags to be passed to the JVM when running Spark.
In spark-env.sh
, you can set any environment variables you wish to be available
when running Spark programs, such as PATH
, SCALA_HOME
, etc. There are also
several Spark-specific variables you can set:
-
SPARK_CLASSPATH
: Extra entries to be added to the classpath, separated by ":". -
SPARK_MEM
: Memory for Spark to use, in the format used by java's-Xmx
option (for example,-Xmx200m
means 200 MB,-Xmx1g
means 1 GB, etc). -
SPARK_LIBRARY_PATH
: Extra entries to add tojava.library.path
for locating shared libraries. -
SPARK_JAVA_OPTS
: Extra options to pass to JVM. -
MESOS_NATIVE_LIBRARY
: Your Mesos library, if you want to run on a Mesos cluster. For example, this might be/usr/local/lib/libmesos.so
on Linux.
Note that spark-env.sh
must be a shell script (it must be executable and start
with a #!
header to specify the shell to use).