Skip to content

Fix failing check #944

New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Merged
merged 3 commits into from
Apr 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -171,15 +171,15 @@ embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o

libllama.so: llama.o ggml.o
$(CXX) $(CXXFLAGS) -shared -fPIC -o libllama.so llama.o ggml.o $(LDFLAGS)

#
# Tests
#

benchmark: ggml.o
$(CXX) $(CXXFLAGS) examples/benchmark/benchmark-q4_0-matmult.c ggml.o -o benchmark-q4_0-matmult $(LDFLAGS)
$(CXX) $(CXXFLAGS) examples/benchmark/benchmark-q4_0-matmult.c ggml.o -o benchmark-q4_0-matmult $(LDFLAGS)
./benchmark-q4_0-matmult

.PHONY: tests
tests:
bash ./tests/run-tests.sh
106 changes: 53 additions & 53 deletions examples/benchmark/benchmark-q4_0-matmult.c
Original file line number Diff line number Diff line change
Expand Up @@ -24,12 +24,12 @@

float tensor_sum_elements(struct ggml_tensor * tensor) {
float sum = 0;
if (tensor->type==6) {
for (int j = 0; j < tensor->ne[1]; j++) {
for (int k = 0; k < tensor->ne[0]; k++) {
sum += ((float *) tensor->data)[j*tensor->ne[0]+k];
}
}
if (tensor->type==6) {
for (int j = 0; j < tensor->ne[1]; j++) {
for (int k = 0; k < tensor->ne[0]; k++) {
sum += ((float *) tensor->data)[j*tensor->ne[0]+k];
}
}
}
return sum;
}
Expand All @@ -39,7 +39,7 @@ float tensor_sum_elements(struct ggml_tensor * tensor) {
These are mapping to unknown
GGML_TYPE_I8,
GGML_TYPE_I16,
GGML_TYPE_I32,
GGML_TYPE_I32,
GGML_TYPE_COUNT,
*/

Expand All @@ -50,7 +50,7 @@ float tensor_sum_elements(struct ggml_tensor * tensor) {
TENSOR->ne[0], TENSOR->ne[1], TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \
{ float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); }

struct benchmark_params_struct {
struct benchmark_params_struct {
int32_t n_threads = 1;
int32_t n_iterations = 10;
};
Expand All @@ -67,7 +67,7 @@ void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct para

int main(int argc, char ** argv) {


struct benchmark_params_struct benchmark_params;

bool invalid_param = false;
Expand All @@ -90,7 +90,7 @@ int main(int argc, char ** argv) {
} else if (arg == "-h" || arg == "--help") {
print_usage(argc, argv, benchmark_params);
exit(0);
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
print_usage(argc, argv, benchmark_params);
Expand All @@ -101,41 +101,41 @@ int main(int argc, char ** argv) {

// create the ggml context
printf("Starting Test\n");





struct ggml_context * ctx;
//const int sizex = 4096;
//const int sizey = 11008;

#undef VERBOSE_DEBUGGING
#ifndef VERBOSE_DEBUGGING
const int sizey = 4096;
const int sizex = 11008;
const int sizex = 11008;
const int sizez = 128;
#else
/* Working - let's increase size */
const int sizey = 1;
const int sizex = (8*32);
const int sizex = (8*32);
const int sizez = 1;

/*const int sizey = 1;
const int sizex = 3*(8*32);
const int sizex = 3*(8*32);
const int sizez = 1;*/
#endif

//printf("Memsize required = %i\n", sizex*sizex);
ggml_type wtype = GGML_TYPE_F32;
ggml_type wtype = GGML_TYPE_F32;

size_t ctx_size = 0;
ctx_size += sizex*sizey*ggml_type_sizef(wtype);
ctx_size += sizex*sizey*ggml_type_sizef(wtype);
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
ctx_size += sizex*sizeof(float);
ctx_size += 1024*1024*100;
ctx_size += 1024*1024*100;

printf("Allocating Memory of size %li byes, %li MB\n",ctx_size, (ctx_size/1024/1024));

struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
Expand All @@ -147,88 +147,88 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}


printf("Creating new tensors\n");
// printf("Creating new tensor m1\n");
struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
ggml_set_f32(m11, 1.0f);

// printf("Creating new tensor m1\n");
struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
ggml_set_f32(m12, 1.5f);

// printf("Creating new tensor m2\n");
struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
ggml_set_f32(m2, 2.0f);

printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n");
// printf("Creating new tensor m11xm2\n");
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);

// printf("Creating compute graph\n");
struct ggml_cgraph gf = ggml_build_forward(m11xm2);

gf.n_threads=benchmark_params.n_threads;
printf("cgraph->n_threads=%i\n",gf.n_threads);
printf("cgraph->n_threads=%i\n",gf.n_threads);

TENSOR_DUMP(m11);
TENSOR_DUMP(m2);

ggml_graph_compute(ctx, &gf);

TENSOR_DUMP(gf.nodes[0]);

printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n");

int32_t nelements = sizex*sizey;
int32_t ne[2] = { sizex, sizey };
std::vector<int64_t> hist_cur(1 << 4, 0);

std::vector<int64_t> hist_cur(1 << 4, 0);

// Set up a the benchmark matrices
// printf("Creating new tensor q11 & Running quantize\n");
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data());

// Set up a the compute graph
// printf("Creating new tensor q31\n");
struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);

// printf("Creating compute graph\n");
struct ggml_cgraph gf31 = ggml_build_forward(q31);
gf31.n_threads=benchmark_params.n_threads;
// Set up a second graph computation to make sure we override the CPU cache lines

// Set up a second graph computation to make sure we override the CPU cache lines
// printf("Creating new tensor q12 & Running quantize\n");
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data());

// printf("Creating new tensor q32\n");
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);

//printf("Creating compute graph\n");
struct ggml_cgraph gf32 = ggml_build_forward(q32);
gf32.n_threads=benchmark_params.n_threads;
printf("cgraph->n_threads=%i\n",gf31.n_threads);
printf("cgraph->n_threads=%i\n",gf31.n_threads);

const int dimx = sizex;
const int dimy = sizey;
const int dimz = sizez;
long long int flops_per_dot_product = dimy + dimy;
long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ;
printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - aboout %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);


// Let's use the F32 result from above as a reference for the q4_0 multiplication
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);


printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n");
printf("==============================================================================================\n");

for (int i=0;i<benchmark_params.n_iterations ;i++) {

long long int start = ggml_time_us();
//printf("Running ggml_graph_compute\n");
ggml_graph_compute(ctx, &gf31);
Expand All @@ -238,33 +238,33 @@ int main(int argc, char ** argv) {
float flops_per_usec = (1.0f*flops_per_matrix)/usec;
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%19.2f\n",
i,
gf31.n_threads,
sizex, sizey, sizez, flops_per_matrix,
gf31.n_threads,
sizex, sizey, sizez, flops_per_matrix,
usec,flops_per_usec);

#ifdef VERBOSE_DEBUGGING
TENSOR_DUMP("res",gf31.nodes[0])
#endif

// Check that the matrix multiplication result is in the right ballpark
// Check that the matrix multiplication result is in the right ballpark
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]);
float delta = abs(sum_of_Q4_result - sum_of_F32_reference);
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6

if (delta > allowed_delta) {
printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n",
sum_of_F32_reference,
sum_of_F32_reference,
sum_of_Q4_result,
delta,
allowed_delta
);
exit(0);
}
// Running a different graph computation to make sure we override the CPU cache lines

// Running a different graph computation to make sure we override the CPU cache lines
ggml_graph_compute(ctx, &gf32);

}

}