This is the official code for the paper "Lite-Mind:Towards Efficient and Robust Brain Representation Learning", which is an efficient model for fMRI decoding (https://arxiv.org/abs/2312.03781).[ACMMM 2024 Oral]
conda create -n litemind python==3.8.5
conda activate litemind
pip install -r requirement.txt
-
Download
nsddata
,nsddata_betas
, andnsddata_stimuli
from NSD (http://naturalscenesdataset.org/) and place them under the nsd directory. -
Extraction of nsdgeneral roi from raw fMRI.
python src/fmri2nsd.py --subject subj01
- Extraction of features for the corresponding COCO images (Features can also be extracted at training time for data augmentation).
python src/img2feat.py --subject subj01 --device 0 --nsddir ./nsd --savedir <your image feature save path>
Training can be done on a single Tesla V100 32GB GPU.
python src/train_litemind.py --device cuda:0 --patch-size 450 --batch-size 1000 --epochs 1500 --subject subj01
python src/inference_litemind.py --device 0 --subject subj01 --patch_size 450
You need to train an extra prior for laion-5b retrieval and only use CLS embeddings. The CLS embeddings for all 5 billion images are available at https://knn.laion.ai/ and can be queried for K-nearest neighbor lookup via the CLIP Retrieval client (https://github.com/rom1504/clip-retrieval).
python src/train_litemind.py --device cuda:0 --patch-size 450 --batch-size 1000 --epochs 1500 --subject subj01 --cls_only
python src/train_prior.py --subject subj01 --cls_only --batch-size 128 --epochs 300
Inference on the LAION-5B dataset
python src/laion5b.py --subject subj01
Our codebase builds on these repositories. We would like to thank the authors.
https://github.com/aikunyi/FreTS
https://github.com/lucidrains/DALLE2-pytorch
https://github.com/tknapen/nsd_access
https://github.com/MedARC-AI/fMRI-reconstruction-NSD