Skip to content

Commit

Permalink
Merge pull request #157 from ADA110/master
Browse files Browse the repository at this point in the history
Analytics Module Tests
  • Loading branch information
ardunn authored Jan 19, 2019
2 parents 8db0695 + 6a4d143 commit 8e3bfec
Showing 1 changed file with 44 additions and 0 deletions.
44 changes: 44 additions & 0 deletions automatminer/analytics/tests/test_core.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import unittest
import os.path
import warnings

from automatminer.analytics.core import Analytics
from automatminer.presets import get_preset_config
from automatminer.pipeline import MatPipe
from matminer.datasets import load_dataset
try:
#from skater.core.explanations import Interpretation
#from skater.model import InMemoryModel
warnings.warn("")
except ImportError:
warnings.warn("skater package not found. Please install skater to use the "
"Analytics modeule/")
Interpretation = None
InMemoryModel = None


@unittest.skipIf("CI" in os.environ.keys(), "Test too intensive for CircleCI.")
class TestAnalytics(unittest.TestCase):

def setUp(self):
df = load_dataset('elastic_tensor_2015')
df = df[["formula", "K_VRH"]]
df = df.rename({"formula": "composition"}, axis=1)
self.config = get_preset_config("debug")
fitted_pipeline = MatPipe(**self.config).fit(df, "K_VRH")

self.analytics = Analytics(predictive_model=fitted_pipeline)


def test_get_feature_importance(self):
feature_importance = self.analytics.get_feature_importance()
print(feature_importance)
self.assertTrue(not feature_importance.empty)


def test_plot_partial_dependence(self):
feature_importance = self.analytics.get_feature_importance()
for feature in feature_importance.index[len(feature_importance.index)-15:]:
self.analytics.plot_partial_dependence(feature, save_plot=True, show_plot=False)
self.assertTrue(os.path.isfile("t_pdp.png"))
self.assertTrue(os.path.isfile("m_pdp.png"))

0 comments on commit 8e3bfec

Please # to comment.