#pip install any-iter-to-html-table
from any_iter_to_html_table import create_html_table_from_iterable
data = {
"glossary": {
"title": "example glossary",
"GlossDiv": {
"title": "S",
"GlossList": {
"GlossEntry": {
"ID": "SGML",
"SortAs": "SGML",
"GlossTerm": "Standard Generalized Markup Language",
"Acronym": "SGML",
"Abbrev": "ISO 8879:1986",
"GlossDef": {
"para": "A meta-markup language, used to create markup languages such as DocBook.",
"GlossSeeAlso": ["GML", "XML"],
},
"GlossSee": "markup",
}
},
},
}
}
"""https://json.org/example.html"""
fromjsonorg_result = create_html_table_from_iterable(
data, filename="fromjsonorg.html", title="Pandas - DataFrame", sparsify=True
)
jsonfile = r"F:\jsonstackoverflow.json"
#'https://api.stackexchange.com/2.2/answers?order=desc&sort=activity&site=stackoverflow'
json_from_file = create_html_table_from_iterable(
jsonfile,
filename="json_from_file.html",
title="Pandas - DataFrame",
sparsify=False,
)
sparsify=True
Design is separated from data. You can use the preset, but if you want, you can easily create your own CSS style
#'https://stackoverflow.com/questions/64359762/constructing-a-pandas-dataframe-with-columns-and-sub-columns-from-nested-diction
nesteddict = {
"level1": {
"t1": {
"s1": {"col1": 5, "col2": 4, "col3": 4, "col4": 9},
"s2": {"col1": 1, "col2": 5, "col3": 4, "col4": 8},
"s3": {"col1": 11, "col2": 8, "col3": 2, "col4": 9},
"s4": {"col1": 5, "col2": 4, "col3": 4, "col4": 9},
},
"t2": {
"s1": {"col1": 5, "col2": 4, "col3": 4, "col4": 9},
"s2": {"col1": 1, "col2": 5, "col3": 4, "col4": 8},
"s3": {"col1": 11, "col2": 8, "col3": 2, "col4": 9},
"s4": {"col1": 5, "col2": 4, "col3": 4, "col4": 9},
},
"t3": {
"s1": {"col1": 1, "col2": 2, "col3": 3, "col4": 4},
"s2": {"col1": 5, "col2": 6, "col3": 7, "col4": 8},
"s3": {"col1": 9, "col2": 10, "col3": 11, "col4": 12},
"s4": {"col1": 13, "col2": 14, "col3": 15, "col4": 16},
},
},
"level2": {
"t1": {
"s1": {"col1": 5, "col2": 4, "col3": 9, "col4": 9},
"s2": {"col1": 1, "col2": 5, "col3": 4, "col4": 5},
"s3": {"col1": 11, "col2": 8, "col3": 2, "col4": 13},
"s4": {"col1": 5, "col2": 4, "col3": 4, "col4": 20},
},
"t2": {
"s1": {"col1": 5, "col2": 4, "col3": 4, "col4": 9},
"s2": {"col1": 1, "col2": 5, "col3": 4, "col4": 8},
"s3": {"col1": 11, "col2": 8, "col3": 2, "col4": 9},
"s4": {"col1": 5, "col2": 4, "col3": 4, "col4": 9},
},
"t3": {
"s1": {"col1": 1, "col2": 2, "col3": 3, "col4": 4},
"s2": {"col1": 5, "col2": 6, "col3": 7, "col4": 8},
"s3": {"col1": 9, "col2": 10, "col3": 11, "col4": 12},
"s4": {"col1": 13, "col2": 14, "col3": 15, "col4": 16},
},
},
}
nested_dict = create_html_table_from_iterable(
nesteddict,
filename="from_nested_dict.html",
title="Pandas - DataFrame",
sparsify=False,
)
Convert any nested iterable to an HTML table. Design is separated from data. You can use the preset, but if you want,
you can easily create your own CSS style.
Parameters:
data: Any
You can pass any iterable (list, dict, tuple …), json file path (str) or json URL (str)
filename: Union[None,str]
File path for output, will be saved in your current working directory
If None, no files will be written.
title: str
Title for HTML
(default = 'Pandas DataFrame')
sparsify: bool
Repeat keys in every line
(default = False)
Returns:
tuple[str,str]