Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Freenoise change vae_batch_size to decode_chunk_size #9110

Merged
merged 2 commits into from
Aug 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions src/diffusers/pipelines/animatediff/pipeline_animatediff.py
Original file line number Diff line number Diff line change
Expand Up @@ -396,15 +396,15 @@ def prepare_ip_adapter_image_embeds(

return ip_adapter_image_embeds

def decode_latents(self, latents, vae_batch_size: int = 16):
def decode_latents(self, latents, decode_chunk_size: int = 16):
latents = 1 / self.vae.config.scaling_factor * latents

batch_size, channels, num_frames, height, width = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)

video = []
for i in range(0, latents.shape[0], vae_batch_size):
batch_latents = latents[i : i + vae_batch_size]
for i in range(0, latents.shape[0], decode_chunk_size):
batch_latents = latents[i : i + decode_chunk_size]
batch_latents = self.vae.decode(batch_latents).sample
video.append(batch_latents)

Expand Down Expand Up @@ -582,7 +582,7 @@ def __call__(
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
vae_batch_size: int = 16,
decode_chunk_size: int = 16,
**kwargs,
):
r"""
Expand Down Expand Up @@ -651,7 +651,7 @@ def __call__(
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
vae_batch_size (`int`, defaults to `16`):
decode_chunk_size (`int`, defaults to `16`):
The number of frames to decode at a time when calling `decode_latents` method.

Examples:
Expand Down Expand Up @@ -824,7 +824,7 @@ def __call__(
if output_type == "latent":
video = latents
else:
video_tensor = self.decode_latents(latents, vae_batch_size)
video_tensor = self.decode_latents(latents, decode_chunk_size)
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)

# 10. Offload all models
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -435,15 +435,15 @@ def prepare_ip_adapter_image_embeds(
return ip_adapter_image_embeds

# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
def decode_latents(self, latents, vae_batch_size: int = 16):
def decode_latents(self, latents, decode_chunk_size: int = 16):
latents = 1 / self.vae.config.scaling_factor * latents

batch_size, channels, num_frames, height, width = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)

video = []
for i in range(0, latents.shape[0], vae_batch_size):
batch_latents = latents[i : i + vae_batch_size]
for i in range(0, latents.shape[0], decode_chunk_size):
batch_latents = latents[i : i + decode_chunk_size]
batch_latents = self.vae.decode(batch_latents).sample
video.append(batch_latents)

Expand Down Expand Up @@ -728,7 +728,7 @@ def __call__(
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
vae_batch_size: int = 16,
decode_chunk_size: int = 16,
):
r"""
The call function to the pipeline for generation.
Expand Down Expand Up @@ -1064,7 +1064,7 @@ def __call__(
if output_type == "latent":
video = latents
else:
video_tensor = self.decode_latents(latents, vae_batch_size)
video_tensor = self.decode_latents(latents, decode_chunk_size)
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)

# 10. Offload all models
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -500,24 +500,24 @@ def prepare_ip_adapter_image_embeds(

return ip_adapter_image_embeds

def encode_video(self, video, generator, vae_batch_size: int = 16) -> torch.Tensor:
def encode_video(self, video, generator, decode_chunk_size: int = 16) -> torch.Tensor:
latents = []
for i in range(0, len(video), vae_batch_size):
batch_video = video[i : i + vae_batch_size]
for i in range(0, len(video), decode_chunk_size):
batch_video = video[i : i + decode_chunk_size]
batch_video = retrieve_latents(self.vae.encode(batch_video), generator=generator)
latents.append(batch_video)
return torch.cat(latents)

# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
def decode_latents(self, latents, vae_batch_size: int = 16):
def decode_latents(self, latents, decode_chunk_size: int = 16):
latents = 1 / self.vae.config.scaling_factor * latents

batch_size, channels, num_frames, height, width = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)

video = []
for i in range(0, latents.shape[0], vae_batch_size):
batch_latents = latents[i : i + vae_batch_size]
for i in range(0, latents.shape[0], decode_chunk_size):
batch_latents = latents[i : i + decode_chunk_size]
batch_latents = self.vae.decode(batch_latents).sample
video.append(batch_latents)

Expand Down Expand Up @@ -638,7 +638,7 @@ def prepare_latents(
device,
generator,
latents=None,
vae_batch_size: int = 16,
decode_chunk_size: int = 16,
):
if latents is None:
num_frames = video.shape[1]
Expand Down Expand Up @@ -673,10 +673,11 @@ def prepare_latents(
)

init_latents = [
self.encode_video(video[i], generator[i], vae_batch_size).unsqueeze(0) for i in range(batch_size)
self.encode_video(video[i], generator[i], decode_chunk_size).unsqueeze(0)
for i in range(batch_size)
]
else:
init_latents = [self.encode_video(vid, generator, vae_batch_size).unsqueeze(0) for vid in video]
init_latents = [self.encode_video(vid, generator, decode_chunk_size).unsqueeze(0) for vid in video]

init_latents = torch.cat(init_latents, dim=0)

Expand Down Expand Up @@ -761,7 +762,7 @@ def __call__(
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
vae_batch_size: int = 16,
decode_chunk_size: int = 16,
):
r"""
The call function to the pipeline for generation.
Expand Down Expand Up @@ -837,7 +838,7 @@ def __call__(
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
vae_batch_size (`int`, defaults to `16`):
decode_chunk_size (`int`, defaults to `16`):
The number of frames to decode at a time when calling `decode_latents` method.

Examples:
Expand Down Expand Up @@ -940,7 +941,7 @@ def __call__(
device=device,
generator=generator,
latents=latents,
vae_batch_size=vae_batch_size,
decode_chunk_size=decode_chunk_size,
)

# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
Expand Down Expand Up @@ -1008,7 +1009,7 @@ def __call__(
if output_type == "latent":
video = latents
else:
video_tensor = self.decode_latents(latents, vae_batch_size)
video_tensor = self.decode_latents(latents, decode_chunk_size)
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)

# 10. Offload all models
Expand Down
10 changes: 5 additions & 5 deletions src/diffusers/pipelines/pag/pipeline_pag_sd_animatediff.py
Original file line number Diff line number Diff line change
Expand Up @@ -407,15 +407,15 @@ def prepare_ip_adapter_image_embeds(
return ip_adapter_image_embeds

# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents
def decode_latents(self, latents, vae_batch_size: int = 16):
def decode_latents(self, latents, decode_chunk_size: int = 16):
latents = 1 / self.vae.config.scaling_factor * latents

batch_size, channels, num_frames, height, width = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)

video = []
for i in range(0, latents.shape[0], vae_batch_size):
batch_latents = latents[i : i + vae_batch_size]
for i in range(0, latents.shape[0], decode_chunk_size):
batch_latents = latents[i : i + decode_chunk_size]
batch_latents = self.vae.decode(batch_latents).sample
video.append(batch_latents)

Expand Down Expand Up @@ -588,7 +588,7 @@ def __call__(
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
vae_batch_size: int = 16,
decode_chunk_size: int = 16,
pag_scale: float = 3.0,
pag_adaptive_scale: float = 0.0,
):
Expand Down Expand Up @@ -847,7 +847,7 @@ def __call__(
if output_type == "latent":
video = latents
else:
video_tensor = self.decode_latents(latents, vae_batch_size)
video_tensor = self.decode_latents(latents, decode_chunk_size)
video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type)

# 10. Offload all models
Expand Down
Loading