Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

[tests] fix broken xformers tests #9206

Merged
merged 4 commits into from
Aug 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions tests/pipelines/animatediff/test_animatediff_controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
)
from diffusers.models.attention import FreeNoiseTransformerBlock
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import torch_device

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
Expand Down Expand Up @@ -329,6 +330,13 @@ def test_prompt_embeds(self):
inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device)
pipe(**inputs)

@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
super()._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)

def test_free_init(self):
components = self.get_dummy_components()
pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components)
Expand Down
8 changes: 8 additions & 0 deletions tests/pipelines/animatediff/test_animatediff_sparsectrl.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
UNetMotionModel,
)
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import torch_device

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
Expand Down Expand Up @@ -393,6 +394,13 @@ def test_prompt_embeds(self):
inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device)
pipe(**inputs)

@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
super()._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)

def test_free_init(self):
components = self.get_dummy_components()
pipe: AnimateDiffSparseControlNetPipeline = self.pipeline_class(**components)
Expand Down
4 changes: 4 additions & 0 deletions tests/pipelines/cogvideox/test_cogvideox.py
Original file line number Diff line number Diff line change
Expand Up @@ -275,6 +275,10 @@ def test_vae_tiling(self, expected_diff_max: float = 0.2):
"VAE tiling should not affect the inference results",
)

@unittest.skip("xformers attention processor does not exist for CogVideoX")
def test_xformers_attention_forwardGenerator_pass(self):
pass


@slow
@require_torch_gpu
Expand Down
8 changes: 8 additions & 0 deletions tests/pipelines/latte/test_latte.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
LattePipeline,
LatteTransformer3DModel,
)
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
numpy_cosine_similarity_distance,
Expand Down Expand Up @@ -256,6 +257,13 @@ def test_save_load_optional_components(self):
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1.0)

@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
super()._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)


@slow
@require_torch_gpu
Expand Down
Loading