Skip to content
forked from ttytu/RecKG-web

Web implementation of the paper "RecKG: Knowledge Graph for Recommender Systems".

License

Notifications You must be signed in to change notification settings

inhaKDD/RecKG-web

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RecKG Web

RecKG Web lets you create, integrate and visualize recommendation datasets in KG format.

image

Web implementation of the paper "RecKG: Knowledge Graph for Recommender Systems". For more information about RecKG, visit the official RecKG Repository. You can download RecKG paper from arxiv.

RecKG Web Functionalities

1. Upload

  • Users can upload recommendation datasets as separate CSV files for user data, item data, and interaction data.
    • Each file’s header should represent the attribute names to be converted into the RecKG format.
    • Example item data headers (MovieLens):
      • movie_id
      • movie_title
      • release_date
      • video_release_date
      • imdb_url
      • genre_list

2. Map

  • Map attributes from the uploaded files to match the RecKG format.
    • Example item data mapping:
      • movie_iditem
      • movie_titleitem_name
      • video_release_daterelease_date
      • typegenre_list
  • After mapping, convert the dataset into the RecKG format.

RecKG Data Format

{
  "item_data": {
    "item": "string",
    "item_name": "string",
    "performer": "string",
    "type": "string",
    "release_date": "string"
  },
  "user_data": {
    "user": "string",
    "age": "string",
    "gender": "string",
    "occupation": "string",
    "residence": "string"
  },
  "interaction_data": {
    "user": "string",
    "item": "string",
    "rating": "string",
    "interaction": [
      "string"
    ]
  }
}

3. Integrate, Visualize & Download KG

  • Integrate Two KGs

    • Functionality to merge two datasets in the RecKG format.
  • Graph Visualization of Sample Data

    • Visualize the transformed dataset using D3.js.
    • Users can choose between a user-based or item-based view.
    • Options to set:
      • Initial number of nodes
      • Maximum number of interactions
  • Download Processed RecKG Data

    • Provides an option to download the dataset in RecKG format after processing.

About

Web implementation of the paper "RecKG: Knowledge Graph for Recommender Systems".

Resources

License

Stars

Watchers

Forks

Languages

  • TypeScript 57.9%
  • Python 36.0%
  • CSS 4.1%
  • JavaScript 1.3%
  • Other 0.7%