RecKG Web lets you create, integrate and visualize recommendation datasets in KG format.
Web implementation of the paper "RecKG: Knowledge Graph for Recommender Systems". For more information about RecKG, visit the official RecKG Repository. You can download RecKG paper from arxiv.
- Users can upload recommendation datasets as separate CSV files for user data, item data, and interaction data.
- Each file’s header should represent the attribute names to be converted into the RecKG format.
- Example item data headers (MovieLens):
movie_id
movie_title
release_date
video_release_date
imdb_url
genre_list
- Map attributes from the uploaded files to match the RecKG format.
- Example item data mapping:
movie_id
→item
movie_title
→item_name
video_release_date
→release_date
type
→genre_list
- Example item data mapping:
- After mapping, convert the dataset into the RecKG format.
{
"item_data": {
"item": "string",
"item_name": "string",
"performer": "string",
"type": "string",
"release_date": "string"
},
"user_data": {
"user": "string",
"age": "string",
"gender": "string",
"occupation": "string",
"residence": "string"
},
"interaction_data": {
"user": "string",
"item": "string",
"rating": "string",
"interaction": [
"string"
]
}
}
-
Integrate Two KGs
- Functionality to merge two datasets in the RecKG format.
-
Graph Visualization of Sample Data
- Visualize the transformed dataset using D3.js.
- Users can choose between a user-based or item-based view.
- Options to set:
- Initial number of nodes
- Maximum number of interactions
-
Download Processed RecKG Data
- Provides an option to download the dataset in RecKG format after processing.