Skip to content

ivankreso/LDN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ladder-DenseNet

Source code which reproduces the results from the paper Efficient Ladder-Style DenseNets for Semantic Segmentation of Large Images (Ivan Krešo, Josip Krapac, Siniša Šegvić) published in IEEE Transactions on Intelligent Transportation Systems (link). Previous work is available on arXiv (link).

Demo video on Cityscapes dataset:

http://www.youtube.com/watch?v=QrB7Np_8GXY

Requirements

  • Python (>= 3.7)
pip install torch pillow numpy tqdm

Preparation

Download Cityscapes

Download and unzip following dataset files from https://www.cityscapes-dataset.com/downloads/:

  • leftImg8bit_trainvaltest.zip
  • gtFine_trainvaltest.zip

Place both leftImg8bit and gtFine dirs into the same dataset root dir dataset_path.

Download pre-trained weights

Pre-trained Cityscapes models are available here.

  • Download and extract the model to model_path.

Evaluation

Evaluate the model on Cityscapes validation subset:

python eval.py --model=models/ldn_semseg.py --reader=data/cityscapes/cityscapes_reader.py --dataset=/path/to/cityscapes --weights=/path/to/ldn121_weights_cityscapes_train.pt

Enable multiscale inference with --multiscale-test=1:

python eval.py --model=models/ldn_semseg.py --reader=data/cityscapes/cityscapes_reader.py --dataset=/path/to/cityscapes --weights=/path/to/ldn121_weights_cityscapes_train.pt --multiscale-test=1

Save color coded segmentations with --save-outputs=1, the images will be saved in the ./outputs dir.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published