Skip to content

Latest commit

 

History

History
71 lines (58 loc) · 1.31 KB

README.md

File metadata and controls

71 lines (58 loc) · 1.31 KB

mlperf-benchmarks

Steps to configure the machine

  1. Clone the repository.
git clone https://github.com/blkswanio/mlperf-benchmarks
  1. Install docker, cuda-runtime and nvidia-docker on the machine.
cd mlperf-benchmarks/
./install_cuda_docker.sh
  1. Install the popper tool.
pip install popper

You can also install it in a virtualenv.

Running the benchmarks

Object Detection

cd object_detection/
popper run -f main.yml -c settings.py

Sentiment Analysis

cd sentiment_analysis/
popper run -f main.yml -c settings.py

Single Stage Detector

cd single_stage_detector/
popper run -f main.yml -c settings.py

RNN translator

cd rnn_translator/
popper run -f main.yml -c settings.py

Translation

cd translation/
popper run -f main.yml -c settings.py

Benchmark output

results/
|----- ssd/
|      |--result_1.txt
|      |--result_2.txt
|      |--result_3.txt
|      |--result_4.txt
|      |--result_5.txt
|----- maskrcnn/
|----- gnmt/
|----- transformer/
|----- systems/
       |--system_details.json

On running the benchmarks, a directory structure like the one above would be generated in the root of the repository.