Skip to content

ivotron/mlperf-workflows

Repository files navigation

mlperf-benchmarks

Steps to configure the machine

  1. Clone the repository.
git clone https://github.com/blkswanio/mlperf-benchmarks
  1. Install docker, cuda-runtime and nvidia-docker on the machine.
cd mlperf-benchmarks/
./install_cuda_docker.sh
  1. Install the popper tool.
pip install popper

You can also install it in a virtualenv.

Running the benchmarks

Object Detection

cd object_detection/
popper run -f main.yml -c settings.py

Sentiment Analysis

cd sentiment_analysis/
popper run -f main.yml -c settings.py

Single Stage Detector

cd single_stage_detector/
popper run -f main.yml -c settings.py

RNN translator

cd rnn_translator/
popper run -f main.yml -c settings.py

Translation

cd translation/
popper run -f main.yml -c settings.py

Benchmark output

results/
|----- ssd/
|      |--result_1.txt
|      |--result_2.txt
|      |--result_3.txt
|      |--result_4.txt
|      |--result_5.txt
|----- maskrcnn/
|----- gnmt/
|----- transformer/
|----- systems/
       |--system_details.json

On running the benchmarks, a directory structure like the one above would be generated in the root of the repository.

About

Popperized MLPerf benchmark workflows

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •