Skip to content

jinnick/DL_project_NLQAC_Instance_Selection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 

Repository files navigation

Natural Language Query Autocompletion for Segmentation

Deep Learning Final Project 4995

Based largely on:

Currently Implemented

Output a image with segmap/bbox based on input query object(s)

python2 infer_query_2.py \ --input_query glass \ --output-dir kid_bat/query_seg\ --image-ext jpg \ --thresh 0.5 --use-vg3k \ kid_bat/inputif no object is detected in the image, orginal input image will be output.

Description of code files:

  • infer_query_2.py - infer the segmentation map and bounding box of input image based on input query object
  • infer_simple.py - infer the segmentation mape and bounding boxes of all objects of input image.
  • dummy_datasets.py - include all classes of objects in VG dataset.
  • build_dict.py - helper function to build a dictionary for indexing all classes in VG3K classes of VG dataset.
  • class_filter.py - helper function to set the bounding box of a object detected not present in input query object list to empy.
  • vis.py - visualize the image with segmentation map and bounding box.

Description of data folder:

  • VG_data_p2 - original images
  • p2_all_seg - output for segmentation for all objects in VG3K classes
  • p2_query_seg - output for segmentation for a subset of objects from input query

Description of dataset:

Dependencies:

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages