ExcelTransformLoad is a robust .NET library for extracting data from Excel files using ClosedXML, transforming it as needed, and loading it into your objects with minimal effort. It supports a variety of data types, flexible column mapping, and both attribute-based and manual mapping approaches.
public class Person {
[ExcelColumn("Full Name", "Name", "Employee Name")]
public string? Name { get; set; }
[ExcelColumn("Age", "Employee Age")]
public int? Age { get; set; }
[ExcelColumn("Salary")]
public decimal? Salary { get; set; }
[ExcelColumn("Join Date")]
public DateTime JoinDate { get; set; }
[ExcelColumn("Last Active", "Last Activity")]
public DateTime? LastActive { get; set; }
}
The ExcelColumn
attribute maps Excel column headers to C# properties. You can provide multiple possible column names to handle variations in your Excel files gracefully.
// Get a stream from a file, memory, or any other source
using var stream = File.OpenRead("employees.xlsx");
// Extract the data using a fluent API
var people = new ExcelExtractor()
.WithHeader(true) // Excel file contains headers
.WithWorksheetIndex(1) // Use the first worksheet (1-based index)
.FromStream(stream) // Set the source stream
.Extract<Person>(); // Perform the extraction
// Use the extracted data
foreach (var person in people) {
Console.WriteLine($"Name: {person.Name}, Age: {person.Age}, Joined: {person.JoinDate:d}");
}
var people = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromFile("employees.xlsx")
.Extract<Person>();
For Excel files without headers, you can use column position for extraction:
public class PersonNoHeader {
// No attributes needed - properties are mapped by column position (1-based)
// First column (A) maps to first property, second column (B) to second property, etc.
public string? Name { get; set; }
public int? Age { get; set; }
public decimal? Salary { get; set; }
public DateTime JoinDate { get; set; }
public DateTime? LastActive { get; set; }
}
// Extract the data
var people = new ExcelExtractor()
.WithHeader(false) // Specify that there's no header row
.WithWorksheetIndex(1)
.FromFile("employees-no-header.xlsx")
.Extract<PersonNoHeader>();
For more control over the extraction process, you can use manual mapping:
// Extract data with manual mapping
var people = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromStream(stream)
.ExtractWithManualMapping(row => new Person {
Name = row.Cell(1).GetString(),
Age = !row.Cell(2).IsEmpty() ? (int)row.Cell(2).GetDouble() : null,
Salary = !row.Cell(3).IsEmpty() ? (decimal)row.Cell(3).GetDouble() : null,
JoinDate = row.Cell(4).GetDateTime(),
LastActive = !row.Cell(5).IsEmpty() ? row.Cell(5).GetDateTime() : null
});
ExcelTransformLoad supports a wide range of data types:
- Basic types:
string
,int
,decimal
,double
,DateTime
- Nullable variants:
int?
,decimal?
,DateTime?
, etc. TimeSpan
for time valuesGuid
for unique identifiers- Enums for categorized data
If you only need certain columns from an Excel file:
public class PersonWithSpecificColumns {
[ExcelColumn("Name")]
public string? NameOnly { get; set; }
[ExcelColumn("Salary")]
public decimal SalaryOnly { get; set; }
}
var partialData = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromFile("employees.xlsx")
.Extract<PersonWithSpecificColumns>();
Enums are supported out of the box:
public enum UserStatus {
None,
Active,
Inactive,
Suspended
}
public class PersonWithEnumStatus {
[ExcelColumn("Name")]
public string? Name { get; set; }
[ExcelColumn("Status")]
public UserStatus Status { get; set; }
}
var people = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromFile("employees.xlsx")
.Extract<PersonWithEnumStatus>();
Transform data as it's being extracted:
var transformedData = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromStream(stream)
.ExtractWithManualMapping(row => new Person {
// Convert names to uppercase
Name = row.Cell(1).GetString().ToUpper(),
// Double the age values
Age = !row.Cell(2).IsEmpty() ? (int)(row.Cell(2).GetDouble() * 2) : null,
// Halve the salary values
Salary = !row.Cell(3).IsEmpty() ? (decimal)(row.Cell(3).GetDouble() / 2) : null,
// Add a year to join dates
JoinDate = row.Cell(4).GetDateTime().AddYears(1),
// Use current date for missing activity dates
LastActive = !row.Cell(5).IsEmpty() ? row.Cell(5).GetDateTime() : DateTime.Now
});
You can map Excel data to any object type:
public class CustomPerson {
public string? FullName { get; set; }
public int YearsOld { get; set; }
public decimal AnnualSalary { get; set; }
public DateTime StartDate { get; set; }
public bool IsActive { get; set; }
}
var customData = new ExcelExtractor()
.WithHeader(true)
.WithWorksheetIndex(1)
.FromStream(stream)
.ExtractWithManualMapping(row => new CustomPerson {
FullName = row.Cell(1).GetString(),
YearsOld = !row.Cell(2).IsEmpty() ? (int)row.Cell(2).GetDouble() : 0,
AnnualSalary = !row.Cell(3).IsEmpty() ? (decimal)row.Cell(3).GetDouble() : 0,
StartDate = row.Cell(4).GetDateTime(),
IsActive = !row.Cell(5).IsEmpty()
});
Based on benchmarks, both attribute-based and manual mapping provide good performance:
Method | Mean | Error | StdDev | Gen0 | Gen1 | Gen2 | Allocated |
---|---|---|---|---|---|---|---|
SmallFile_AttributeMapping | 3.330 ms | 0.0482 ms | 0.0403 ms | 140.6250 | 46.8750 | - | 1.89 MB |
SmallFile_ManualMapping | 2.740 ms | 0.0197 ms | 0.0154 ms | 148.4375 | 46.8750 | - | 1.86 MB |
SmallFile_ManualMapping_NoAttributes | 2.766 ms | 0.0550 ms | 0.0540 ms | 148.4375 | 46.8750 | - | 1.86 MB |
MediumFile_AttributeMapping | 16.327 ms | 0.3255 ms | 0.5615 ms | 1000.0000 | 727.2727 | 90.9091 | 13.66 MB |
MediumFile_ManualMapping | 15.806 ms | 0.3136 ms | 0.5492 ms | 1000.0000 | 700.0000 | 100.0000 | 13.67 MB |
LargeFile_AttributeMapping | 177.912 ms | 3.4578 ms | 4.8473 ms | 9000.0000 | 4000.0000 | 2000.0000 | 129.31 MB |
LargeFile_ManualMapping | 183.702 ms | 3.1083 ms | 2.7555 ms | 9000.0000 | 5000.0000 | 2000.0000 | 129.61 MB |
ManyColumns_AttributeMapping | 27.877 ms | 0.5434 ms | 0.5815 ms | 1444.4444 | 888.8889 | 222.2222 | 18.74 MB |
ManyColumns_ManualMapping | 27.434 ms | 0.4533 ms | 0.4241 ms | 1444.4444 | 888.8889 | 222.2222 | 18.69 MB |
Manual mapping provides a slight performance edge for small files, while both approaches perform similarly for larger datasets.
If you're already using ClosedXML or similar libraries extensively, this one might not add much extra value. But if you're looking for a simple way to read an Excel file and load it into your objects without any hassle, this library is worth checking out!
It's user-friendly and follows a fluent pattern, making it easy to define your options in a natural, intuitive way.