This package is designed to run heavy loads in a computer cluster. Supported task schedulers are:
- Running on a single node
- SLURM
PRs to add more schedulers are welcome.
- Run multiple tasks in parallel.
- Run tasks in randomised order but consistently in multiple computing nodes.
- Consistent pipeline to work with heavy tasks (directory creation, handling errors, postprocessing...)
You can find the documentation here.
The package can be used as follows:
from dataclasses import dataclass
from pathlib import Path
from typing import Iterator
import slurmer
@dataclass
class MyTaskParameters(slurmer.TaskParameters):
processing_id: int
@dataclass
class MyTaskResult(slurmer.TaskResult):
good_result: bool
class MyTask(slurmer.Task):
def __init__(self, min_job: int, max_job: int):
super().__init__()
self.min_job = min_job
self.max_job = max_job
def generate_parameters(self) -> Iterator[MyTaskParameters]:
for i in range(self.min_job, self.max_job):
yield MyTaskParameters(processing_id=i)
def make_dirs(self):
# Dirs are created before the task is run
for i in range(self.min_job, self.max_job):
Path(f"out/result_{i}").mkdir(parents=True, exist_ok=True)
def process_function(self, parameters: MyTaskParameters) -> MyTaskResult:
# Run your heavy code here
for i in range(parameters.processing_id, parameters.processing_id + 10):
print(f"Processing {i}")
return MyTaskResult(good_result=True)
def process_output(self, result: MyTaskResult) -> bool:
# Postprocess output, this is NOT run in parallel and only handles the tasks run
# in the current node. If you want to postprocess everything wait for all the nodes
# to finsish computing.
#
# This function should check whether the output is the "expected" one and return True
# if something went wrong.
return not result.good_result
Then in your main script:
>>> task = MyTask(min_job=1, max_job=10)
>>> task.execute_tasks()