Skip to content
/ FloRL Public

Implicit Normalizing Flows + Reinforcement Learning

License

Notifications You must be signed in to change notification settings

joeybose/FloRL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Improving Exploration in SAC with Normalizing Flows Policies

This codebase was used to generate the results documented in the paper "Improving Exploration in Soft-Actor-Critic with Normalizing Flows Policies". Patrick Nadeem Ward*12, Ariella Smofsky*12, Avishek Joey Bose12. INNF Workshop ICML 2019.

Requirements

Run Experiments

Gaussian policy on Dense Gridworld environment with REINFORCE:

TODO

Gaussian policy on Sparse Gridworld environment with REINFORCE:

TODO

Gaussian policy on Dense Gridworld environment with reparametrization:

python main.py --namestr=G-S-DG-CG --make_cont_grid --batch_size=128 --replay_size=100000 --hidden_size=64 --num_steps=100000 --policy=Gaussian --smol --comet --dense_goals --silent

Gaussian policy on Sparse Gridworld environment with reparametrization:

python main.py --namestr=G-S-CG --make_cont_grid --batch_size=128 --replay_size=100000 --hidden_size=64 --num_steps=100000 --policy=Gaussian --smol --comet --silent

Normalizing Flow policy on Dense Gridworld environment:

TODO

Normalizing Flow policy on Sparse Gridworld environment:

TODO

To run an experiment with a different policy distribution, modify the --policy flag.

References

About

Implicit Normalizing Flows + Reinforcement Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •