Skip to content

ICML 2020 Paper: Latent Variable Modelling with Hyperbolic Normalizing Flows

Notifications You must be signed in to change notification settings

joeybose/HyperbolicNF

Repository files navigation

Normalizing Flows for Hyperbolic Spaces and Beyond!

alt text This repository contains code for reproducing results for ICML 2020 paper. "Latent Variable Modeling with Hyperbolic Normalizing Flows", by: Avishek Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, William L. Hamilton

ArXiv Link: https://arxiv.org/pdf/2002.06336.pdf If this repository is helpful in your research, please consider citing us.

@article{bose2020latent,
  title={Latent Variable Modelling with Hyperbolic Normalizing Flows},
  author={Bose, Avishek Joey and Smofsky, Ariella and Liao, Renjie and Panangaden, Prakash and Hamilton, William L},
  journal={Proceedings of the 37th International Conference on Machine Learning},
  year={2020}
}

Installation

Main Python Packages:

  • Pytorch Geometric: https://github.com/rusty1s/pytorch_geometric Follow the installation instructions carefully for this package! Make sure all your environment Path variables are exactly as outlined otherwise you will get weird symbol errors
  • Pytorch 1.5
  • WandB for logging

Other packages can be found in Requirements.txt but not all from that list are needed.

Download the datasets:

python -m data.download

Running Hyperbolic VAE

python main.py --dataset=mnist --batch_size=100 --epochs=100 --model=hyperbolic --wandb --namestr="MNIST 2-HyperbolicVAE"

Running Euclidean Flow

python main.py --dataset=mnist --batch_size=100 --epochs=100 --model=euclidean --flow_model=RealNVP --wandb --namestr="MNIST 2-Hyperbolic 2-RealNVP"

Running Flow Hyperbolic VAE

python main.py --dataset=mnist --batch_size=100 --epochs=100 --model=hyperbolic --flow_model=TangentRealNVP --n_blocks=4 --wandb --namestr="MNIST 2-Hyperbolic 4-TangentRealNVP"

Reference code repos

  1. "A Wrapped Normal Distribution on Hyperbolic Space for Gradient-Based Learning": https://github.com/pfnet-research/hyperbolic_wrapped_distribution
  2. "Mixed-Curvature Variational Autoencoder": https://www.dropbox.com/s/tzilf229js1gsqu/mvae.zip?dl=0
  3. "Hyperbolic Neural Networks": https://github.com/dalab/hyperbolic_nn
  4. "Hyperbolic Graph Convolutional Neural Networks": https://github.com/HazyResearch/hgcn

About

ICML 2020 Paper: Latent Variable Modelling with Hyperbolic Normalizing Flows

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published