Skip to content

jpgianfaldoni/MLBugDetection

Repository files navigation

MLBugDetection

Machine learning explainability and unexpectated behaviors detection

Overview

Most machine learning explainability packages requires both trained models and the training data to create Explainer objects that explain the model's behavior. This package allows ceteris paribus analysis of features using only the trained model and one or more input samples.

Documentation

Installation:

pip install mlbugdetection

How to use

Functions

  1. Monotonic:

    from mlbugdetection.monotonic import check_monotonicity_single_sample, check_monotonicity_multiple_samples

    Usage: For 1 sample

    check_monotonicity_single_sample(model, sample, feature, start, stop, step=1)

    For more than 1 sample:

    check_monotonicity_multiple_samples(model, samples, feature, start, stop, step=1)
  2. Critical Values:

    from mlbugdetection.critical_values import find_critical_values, find_several_critical_values

    Usage: For 1 sample

    find_critical_values(model, sample, feature, start, stop, step=1)

    For more than 1 sample:

    find_several_critical_values(model, samples, feature, start, stop, step=1, bins=15, keep_n=5, log=False)
  3. Calibration:

    from mlbugdetection.calibration import calibration_check

    Usage:

    calibration_check(model, samples, target, pos_label=1)
  4. Sanity:

    from mlbugdetection.sanity import sanity_check, sanity_check_with_indexes

    Usage:

    sanity_check(model, samples, target)

    Same as sanity check, but return the failed indexes

    sanity_check_with_indexes(model, samples, target)

Virtual Environment with Jupyter Notebook

python3 -m virtualenv venv
source venv/bin/activate
python -m pip install --upgrade pip
pip install -r requirements.txt