Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Support English for MeloTTS models. #1134

Merged
merged 4 commits into from
Jul 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/windows-x64-jni.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ jobs:
strategy:
fail-fast: false
matrix:
os: [windows-latest]
os: [windows-2019]

steps:
- uses: actions/checkout@v4
Expand Down
43 changes: 22 additions & 21 deletions scripts/melo-tts/export-onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,13 @@
from melo.api import TTS
from melo.text import language_id_map, language_tone_start_map
from melo.text.chinese import pinyin_to_symbol_map
from melo.text.english import eng_dict, refine_syllables
from pypinyin import Style, lazy_pinyin, phrases_dict, pinyin_dict
from melo.text.symbols import language_tone_start_map

for k, v in pinyin_to_symbol_map.items():
if isinstance(v, list):
break
pinyin_to_symbol_map[k] = v.split()


Expand Down Expand Up @@ -79,6 +83,16 @@ def generate_lexicon():
word_dict = pinyin_dict.pinyin_dict
phrases = phrases_dict.phrases_dict
with open("lexicon.txt", "w", encoding="utf-8") as f:
for word in eng_dict:
phones, tones = refine_syllables(eng_dict[word])
tones = [t + language_tone_start_map["EN"] for t in tones]
tones = [str(t) for t in tones]

phones = " ".join(phones)
tones = " ".join(tones)

f.write(f"{word.lower()} {phones} {tones}\n")

for key in word_dict:
if not (0x4E00 <= key <= 0x9FA5):
continue
Expand Down Expand Up @@ -125,15 +139,13 @@ class ModelWrapper(torch.nn.Module):
def __init__(self, model: "SynthesizerTrn"):
super().__init__()
self.model = model
self.lang_id = language_id_map[model.language]

def forward(
self,
x,
x_lengths,
tones,
lang_id,
bert,
ja_bert,
sid,
noise_scale,
length_scale,
Expand All @@ -147,7 +159,11 @@ def forward(
lang_id: A 1-D array of dtype np.int64. Its shape is (token_numbers,)
sid: an integer
"""
return self.model.infer(
bert = torch.zeros(x.shape[0], 1024, x.shape[1], dtype=torch.float32)
ja_bert = torch.zeros(x.shape[0], 768, x.shape[1], dtype=torch.float32)
lang_id = torch.zeros_like(x)
lang_id[:, 1::2] = self.lang_id
return self.model.model.infer(
x=x,
x_lengths=x_lengths,
sid=sid,
Expand All @@ -169,27 +185,21 @@ def main():

generate_tokens(model.hps["symbols"])

torch_model = ModelWrapper(model.model)
torch_model = ModelWrapper(model)

opset_version = 13
x = torch.randint(low=0, high=10, size=(60,), dtype=torch.int64)
print(x.shape)
x_lengths = torch.tensor([x.size(0)], dtype=torch.int64)
sid = torch.tensor([1], dtype=torch.int64)
tones = torch.zeros_like(x)
lang_id = torch.ones_like(x)

noise_scale = torch.tensor([1.0], dtype=torch.float32)
length_scale = torch.tensor([1.0], dtype=torch.float32)
noise_scale_w = torch.tensor([1.0], dtype=torch.float32)

bert = torch.zeros(1024, x.shape[0], dtype=torch.float32)
ja_bert = torch.zeros(768, x.shape[0], dtype=torch.float32)

x = x.unsqueeze(0)
tones = tones.unsqueeze(0)
lang_id = lang_id.unsqueeze(0)
bert = bert.unsqueeze(0)
ja_bert = ja_bert.unsqueeze(0)

filename = "model.onnx"

Expand All @@ -199,9 +209,6 @@ def main():
x,
x_lengths,
tones,
lang_id,
bert,
ja_bert,
sid,
noise_scale,
length_scale,
Expand All @@ -213,9 +220,6 @@ def main():
"x",
"x_lengths",
"tones",
"lang_id",
"bert",
"ja_bert",
"sid",
"noise_scale",
"length_scale",
Expand All @@ -226,9 +230,6 @@ def main():
"x": {0: "N", 1: "L"},
"x_lengths": {0: "N"},
"tones": {0: "N", 1: "L"},
"lang_id": {0: "N", 1: "L"},
"bert": {0: "N", 2: "L"},
"ja_bert": {0: "N", 2: "L"},
"y": {0: "N", 1: "S", 2: "T"},
},
)
Expand Down
2 changes: 2 additions & 0 deletions scripts/melo-tts/run.sh
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,8 @@ echo "pwd: $PWD"

ls -lh

./show-info.py

head lexicon.txt
echo "---"
tail lexicon.txt
Expand Down
50 changes: 50 additions & 0 deletions scripts/melo-tts/show-info.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
#!/usr/bin/env python3
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)

import onnxruntime


def show(filename):
session_opts = onnxruntime.SessionOptions()
session_opts.log_severity_level = 3
sess = onnxruntime.InferenceSession(filename, session_opts)
for i in sess.get_inputs():
print(i)

print("-----")

for i in sess.get_outputs():
print(i)

meta = sess.get_modelmeta().custom_metadata_map
print("*****************************************")
print("meta\n", meta)


def main():
print("=========model==========")
show("./model.onnx")


if __name__ == "__main__":
main()

"""
=========model==========
NodeArg(name='x', type='tensor(int64)', shape=['N', 'L'])
NodeArg(name='x_lengths', type='tensor(int64)', shape=['N'])
NodeArg(name='tones', type='tensor(int64)', shape=['N', 'L'])
NodeArg(name='sid', type='tensor(int64)', shape=[1])
NodeArg(name='noise_scale', type='tensor(float)', shape=[1])
NodeArg(name='length_scale', type='tensor(float)', shape=[1])
NodeArg(name='noise_scale_w', type='tensor(float)', shape=[1])
-----
NodeArg(name='y', type='tensor(float)', shape=['N', 'S', 'T'])
*****************************************
meta
{'description': 'MeloTTS is a high-quality multi-lingual text-to-speech library by MyShell.ai',
'model_type': 'melo-vits', 'license': 'MIT license', 'sample_rate': '44100', 'add_blank': '1',
'n_speakers': '1', 'bert_dim': '1024', 'language': 'Chinese + English',
'ja_bert_dim': '768', 'speaker_id': '1', 'comment': 'melo', 'lang_id': '3',
'tone_start': '0', 'url': 'https://github.com/myshell-ai/MeloTTS'}
"""
41 changes: 24 additions & 17 deletions scripts/melo-tts/test.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,8 @@ def __init__(self, lexion_filename: str, tokens_filename: str):
tones = [int(t) for t in tones]

lexicon[word_or_phrase] = (phones, tones)
lexicon["呣"] = lexicon["母"]
lexicon["嗯"] = lexicon["恩"]
self.lexicon = lexicon

punctuation = ["!", "?", "…", ",", ".", "'", "-"]
Expand Down Expand Up @@ -98,20 +100,16 @@ def __init__(self, filename):
self.lang_id = int(meta["lang_id"])
self.sample_rate = int(meta["sample_rate"])

def __call__(self, x, tones, lang):
def __call__(self, x, tones):
"""
Args:
x: 1-D int64 torch tensor
tones: 1-D int64 torch tensor
lang: 1-D int64 torch tensor
"""
x = x.unsqueeze(0)
tones = tones.unsqueeze(0)
lang = lang.unsqueeze(0)

print(x.shape, tones.shape, lang.shape)
bert = torch.zeros(1, self.bert_dim, x.shape[-1])
ja_bert = torch.zeros(1, self.ja_bert_dim, x.shape[-1])
print(x.shape, tones.shape)
sid = torch.tensor([self.speaker_id], dtype=torch.int64)
noise_scale = torch.tensor([0.6], dtype=torch.float32)
length_scale = torch.tensor([1.0], dtype=torch.float32)
Expand All @@ -125,9 +123,6 @@ def __call__(self, x, tones, lang):
"x": x.numpy(),
"x_lengths": x_lengths.numpy(),
"tones": tones.numpy(),
"lang_id": lang.numpy(),
"bert": bert.numpy(),
"ja_bert": ja_bert.numpy(),
"sid": sid.numpy(),
"noise_scale": noise_scale.numpy(),
"noise_scale_w": noise_scale_w.numpy(),
Expand All @@ -140,34 +135,46 @@ def __call__(self, x, tones, lang):
def main():
lexicon = Lexicon(lexion_filename="./lexicon.txt", tokens_filename="./tokens.txt")

text = "永远相信,美好的事情即将发生。多音字测试, 银行,行不行?长沙长大"
text = "永远相信,美好的事情即将发生。"
s = jieba.cut(text, HMM=True)

phones, tones = lexicon.convert(s)

en_text = "how are you ?".split()

phones_en, tones_en = lexicon.convert(en_text)
phones += [0]
tones += [0]

phones += phones_en
tones += tones_en

text = "多音字测试, 银行,行不行?长沙长大"
s = jieba.cut(text, HMM=True)

phones2, tones2 = lexicon.convert(s)

phones += phones2
tones += tones2

model = OnnxModel("./model.onnx")
langs = [model.lang_id] * len(phones)

if model.add_blank:
new_phones = [0] * (2 * len(phones) + 1)
new_tones = [0] * (2 * len(tones) + 1)
new_langs = [0] * (2 * len(langs) + 1)

new_phones[1::2] = phones
new_tones[1::2] = tones
new_langs[1::2] = langs

phones = new_phones
tones = new_tones
langs = new_langs

phones = torch.tensor(phones, dtype=torch.int64)
tones = torch.tensor(tones, dtype=torch.int64)
langs = torch.tensor(langs, dtype=torch.int64)

print(phones.shape, tones.shape, langs.shape)
print(phones.shape, tones.shape)

y = model(x=phones, tones=tones, lang=langs)
y = model(x=phones, tones=tones)
sf.write("./test.wav", y, model.sample_rate)


Expand Down