-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path024CNN.py
52 lines (31 loc) · 1.47 KB
/
024CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Part 1
# Building the CNN
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.preprocessing.image import ImageDataGenerator
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Convolution2D(32, 3, 3, input_shape=(64, 64, 3), activation='relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size=(2,2)))
# Another Covolutional Layer
classifier.add(Convolution2D(32, 3, 3, activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2,2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full Connection
classifier.add(Dense(output_dim=128, activation='relu'))
classifier.add(Dense(output_dim=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# Part 2
# Fitting the CNN to the images
train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set', target_size=(64,64), batch_size=32, class_mode='binary')
test_set = test_datagen.flow_from_directory('dataset/test_set', target_size=(64,64), batch_size=32, class_mode='binary')
classifier.fit_generator(training_set, samples_per_epoch=8000, nb_epoch=25, validation_data=test_set, nb_val_samples=2000)