Skip to content

kandarpkakkad/Machine-Learning-A-to-Z

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine-Learning-A-to-Z

Objective

The objective of this course is to learn Machine Learning concepts and be handy with coding of machine learning. Here I have the solutions and codes of "Machine Learning A to Z" course of Udemy.

Expectations

The course expectations include:
  1. Regression
  • Simple Linear Regression
  • Multilinear Regression
  • Polynomial Regression
  • Supported Vector Regression (SVR)
  • Decision Tree Regression
  • Random Forest Regression
  • Logistic Regression
  1. Classification
  • K-Nearest Neighbours
  • Supported Vector Machine (SVM)
  • Kernel SVM
  • Naive Bayes
  • Decision Tree Classifier
  • Random Forest Classifier
  • K-Means Clustering
  • Hierarchical Clustering
  1. Deep Learning
  • NLP
  • ANN
  • CNN