Accords-based recommendation system for female fragrances
Accords-based recommendation system on 39.7K female fragrances.
This project is part of my fragrance exploration series:
- K-means++ clustering on fragrance accords
https://github.com/katarzynajanicka/fragrance-clustering - Agglomerative hierarchical clustering on 39.7K female fragrances
https://github.com/katarzynajanicka/agglomerative-fragrance-clustering - Accords-based recommendation system for female fragrances
https://github.com/katarzynajanicka/fragrance-finder
Project is created with Python - version: 3.8.2.
Python libraries:
- fuzzywuzzy - version 0.18.0
- pandas - version 1.1.1
- seaborn - version 0.11.0
Input data: hierarchical_result.csv, this is the end result of the https://github.com/katarzynajanicka/agglomerative-fragrance-clustering project.
Output data: fragrance_finder.ipynb (Jupyter notebook)
Project structure
Data structure
Most popular fragrances
Findings
Angel Mugler for women
Alien Mugler for women
Coco Mademoiselle Chanel for women
Light Blue Dolce&Gabbana for women
Hypnotic Poison Christian Dior for women
J'adore Christian Dior for women
Flowerbomb Viktor&Rolf for women
Euphoria Calvin Klein for women
Black Orchid Tom Ford for women
Lolita Lempicka Lolita Lempicka for women
La Vie Est Belle Lancome for women
Shalimar Eau de Parfum Guerlain for women
Chanel No 5 Parfum Chanel for women
Twilly d’Hermès Hermès for women
Knot Eau Absolue Bottega Veneta for women
Project is finished.