-
Notifications
You must be signed in to change notification settings - Fork 4
kaushalshetty/Stacking
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Stacked Generalizer Classifier Trains a series of base models using K-fold cross-validation, then combines the predictions of each model into a set of features that are used to train a high-level classifier model. Usage # coding: utf-8 # In[1]: import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from stacking import Stacking from sklearn.model_selection import train_test_split # In[2]: df = pd.read_csv("train.csv") # In[4]: le = LabelEncoder() le.fit(df.type) y = le.transform(df.type) # In[7]: df.drop('id',1,inplace=True) df.drop('color',1,inplace=True) df.drop('type',1,inplace=True) # In[11]: # In[14]: x = np.array(df,dtype=float) X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42) estimators = [LogisticRegression(C=0.8),RandomForestClassifier(n_estimators=500)] stack_model = LogisticRegression() stk = Stacking(estimators,stack_model,use_prob=False,n_splits=5,verbose=1) stk.fit(X_train,y_train) y_pred = stk.predict(X_test) from sklearn.metrics import classification_report,f1_score,accuracy_score,confusion_matrix print "class rep",classification_report(y_test,y_pred) print "confusion_matrix",confusion_matrix(y_test,y_pred) print "accuracy_score",accuracy_score(y_test,y_pred)
About
Multiple Model Ensembling
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published