LiquidBayes is a Bayesian Network (BN) for inferring tumour fraction and clonal prevalences from whole genome sequencing of cell-free DNA (cfDNA) and Direct Library Preparation (DLP+) of a matched tissue biopsy.
Using pip:
pip install git+https://git@github.com/Roth-Lab/LiquidBayes.git
LiquidBayes offers 2 models: cn
and cn_snv
. The required parameters will differ depending on which model is used. Refer to help page by typing liquid-bayes --help
in the terminal.
-i --input-path
Path to liquid bam file-c --cn-profiles-path
Path to file with the copy-number profiles for each clone (.bed format)-o --output
Write output to this file (.csv format)--gc
Path to gc content (.wig format)--mapp
Path to the mappability (.wig format)
liquid-bayes -i input.bam --gc hg38.gc.wig --mapp hg38.map.wig -c cn_profiles.bed -o results.csv -m cn_snv -n 2000 -w 200 -s 1 --progress-bar True --verbose True
All parameters in cn
model plus:
-l --liquid-vcf
Path to liquid biopsy .vcf file (can be compressed in .gz file)-b --tissue-bams
Path to clone .bam files (ex. ... -t path_to_clone_1 -t path_to_clone_2 -t path_to_clone_3 ...) - order of clones on the command line must be the same as in copy-number profiles (--cn-profiles-path)-t --tissue-vcfs
Path to clone .vcf files (ex. ... -t path_to_clone_1 -t path_to_clone_2 -t path_to_clone_3 ...) - order of clones on the command line must be the same as in copy-number profiles (--cn-profiles-path)
liquid-bayes -i input.bam --gc hg38.gc.wig --mapp hg38.map.wig -c cn_profiles.bed -o results.csv -l liquid.vcf.gz -b A.bam -b B.bam -t A.vcf.gz -t B.vcf.gz -m cn_snv -n 2000 -w 200 -s 1 --progress-bar True --verbose True