Skip to content

Learning a Spatial Activation Function for Efficient Image Restoration

Notifications You must be signed in to change notification settings

kligvasser/xUnit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

xUnit

Learning a Spatial Activation Function for Efficient Image Restoration.

Please refer our paper for more details.

Citation

If you use this code for your research, please cite our papers:

@inproceedings{kligvasser2018xunit,
  title={xunit: Learning a spatial activation function for efficient image restoration},
  author={Kligvasser, Idan and Rott Shaham, Tamar and Michaeli, Tomer},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={2433--2442},
  year={2018}
}
@article{kligvasser2018dense,
  title={Dense xUnit Networks},
  author={Kligvasser, Idan and Michaeli, Tomer},
  journal={arXiv preprint arXiv:1811.11051},
  year={2018}
}

Code

Clone repository

Clone this repository into any place you want.

git clone https://github.com/kligvasser/xUnit
cd xUnit

Install dependencies

python -m pip install -r requirements.txt

This code requires PyTorch 1.0+ and python 3+.

Super-resoltution

Pretrained models are avaible at: LINK.

Dataset preparation

For the super-resolution task, the dataset should contains a low and high resolution pairs, in folder structure of:

train
├── img
├── img_x2
├── img_x4
val
├── img
├── img_x2
├── img_x4

You may prepare your own data by using the matlab script:

./super-resolution/scripts/matlab/bicubic_subsample.m

Or download a prepared dataset based on the BSD and VOC datasets from LINK.

Train xSRGAN x4 PSNR model

python3 main.py --root <path-to-dataset> --g-model g_xsrgan --d-model d_xsrgan --model-config "{'scale':4, 'gen_blocks':10, 'dis_blocks':5}" --scale 4 --reconstruction-weight 1.0 --perceptual-weight 0 --adversarial-weight 0 --crop-size 40

Train xSRGAN x4 WGAN-GP model

python3 main.py --root <path-to-dataset> --g-model g_xsrgan --d-model d_xsrgan_ad --model-config "{'scale':4, 'gen_blocks':10, 'dis_blocks':5}" --scale 4 --reconstruction-weight 1.0 --perceptual-weight 1.0 --adversarial-weight 0.005 --crop-size 64 --epochs 1200 --step-size 900 --gen-to-load <path-to-psnr-pretrained-pt> --wgan --penalty-weight 10

Train xSRGAN x4 with SN-discriminator model

python3 main.py --root <path-to-dataset> --g-model g_xsrgan --d-model d_xsrgan --model-config "{'scale':4, 'gen_blocks':10, 'dis_blocks':5, 'spectral':True}" --scale 4 --reconstruction-weight 1.0 --perceptual-weight 1.0 --adversarial-weight 0.01 --crop-size 40 --epochs 2000 --step-size 800 --gen-to-load <path-to-psnr-pretrained-pt> --dis-betas 0 0.9

Eval xSRGAN x4 model

python3 main.py --root <path-to-dataset> --g-model g_xsrgan --d-model d_xsrgan --model-config "{'scale':4, 'gen_blocks':10, 'dis_blocks':5}" --scale 4 --evaluation --gen-to-load <path-to-pretrained-pt>

Gaussian denoising

Pretrained models are avaible at: LINK.

Dataset preparation

For the denoising task, the dataset should contains only clean images, in folder structure of:

train
├── img
val
├── img

Train xDNCNN Grayscale 50 sigma PSNR model

python3 main.py --root <path-to-dataset> --g-model g_xdncnn --d-model d_xdncnn --model-config "{'gen_blocks':10, 'dis_blocks':4, 'in_channels':1}" --reconstruction-weight 1.0 --perceptual-weight 0 --adversarial-weight 0 --crop-size 50 --gray-scale --noise-sigma 50 --epochs 500 --step-size 150

Train xDNCNN 75 sigma PSNR model

python3 main.py --root <path-to-dataset> --g-model g_xdncnn --d-model d_xdncnn --model-config "{'gen_blocks':10, 'dis_blocks':4, 'in_channels':3}" --reconstruction-weight 1.0 --perceptual-weight 0 --adversarial-weight 0 --crop-size 64 --noise-sigma 75 --epochs 1000 --step-size 300

Train xDNCNN 75 sigma WGAN-GP model

python3 main.py --root <path-to-dataset> --g-model g_xdncnn --d-model d_xdncnn --model-config "{'gen_blocks':10, 'dis_blocks':4, 'in_channels':3}" --reconstruction-weight 1.0 --perceptual-weight 1.0 --adversarial-weight 0.01 --crop-size 72 --noise-sigma 75 --epochs 1000 --step-size 300 --gen-to-load <path-to-psnr-pretrained-pt> --wgan --penalty-weight 10

Train xDNCNN Grayscale blind PSNR model

python3 main.py --root <path-to-dataset> --g-model g_xdncnn --d-model d_xdncnn --model-config "{'gen_blocks':10, 'dis_blocks':5, 'in_channels':1}" --reconstruction-weight 1.0 --perceptual-weight 0 --adversarial-weight 0 --crop-size 50 --gray-scale --noise-sigma 50 --blind --epochs 500 --step-size 150

About

Learning a Spatial Activation Function for Efficient Image Restoration

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published