Skip to content

Interact with Fitbit data in R using Fitbit API

License

Notifications You must be signed in to change notification settings

koenniem/fitbitr

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

87 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

fitbitr

CRAN Version

fitbitr package allows users to interact with Fitbit data in R using Fitbit API.

This package allows for most of the read and write methods that you might want to use.

Installation

fitbitr isn't available from CRAN yet, but you can get it from github with:

# install.packages("devtools")
devtools::install_github("teramonagi/fitbitr")

Preparation

API key

To get your own token (API key), you have to register your own application in here. For your reference, we share our setting:

After registration, you can get your own FITBIT_KEY and FITBIT_SECRET (referred to as OAuth 2.0 Client ID and Client Secret in the next figure).

If you set the following variables as a global variable, this package will use these values for API key.

# As a global variable
FITBIT_KEY    <- "<your-fitbit-key>"
FITBIT_SECRET <- "<your-firbit-secret>"
# If you want, Default: "http://localhost:1410/"
# FITBIT_CALLBACK <- "<your-fitbit-callback>" 

Or, you can set these values as a environment variable

Sys.setenv(FITBIT_KEY = "<your-fitbit-key>", FITBIT_SECRET = "<your-firbit-secret>")

Load libraries

library("fitbitr")
library("ggplot2") # for visualization in this document

Get Fitbit API token

You can get your Fitbit toekn using fitbitr::oauth_token():

# Get token
token <- fitbitr::oauth_token()

This function open a web browser autmatically and return Fitbit token.

How to use

Activity

# Example date
date <- "2017-12-29"

# Get daily activity summary
str(get_activity_summary(token, date))
#> List of 3
#>  $ activities: list()
#>  $ goals     :List of 5
#>   ..$ activeMinutes: int 30
#>   ..$ caloriesOut  : int 2790
#>   ..$ distance     : num 8.05
#>   ..$ floors       : int 10
#>   ..$ steps        : int 10000
#>  $ summary   :List of 15
#>   ..$ activeScore         : int -1
#>   ..$ activityCalories    : int 2563
#>   ..$ caloriesBMR         : int 1732
#>   ..$ caloriesOut         : int 4031
#>   ..$ distances           :'data.frame': 7 obs. of  2 variables:
#>   .. ..$ activity: chr [1:7] "total" "tracker" "loggedActivities" "veryActive" ...
#>   .. ..$ distance: num [1:7] 14.33 14.33 0 9.72 1.11 ...
#>   ..$ elevation           : int 0
#>   ..$ fairlyActiveMinutes : int 67
#>   ..$ floors              : int 0
#>   ..$ heartRateZones      :'data.frame': 4 obs. of  5 variables:
#>   .. ..$ caloriesOut: num [1:4] 1905 1320 132 651
#>   .. ..$ max        : int [1:4] 92 128 156 220
#>   .. ..$ min        : int [1:4] 30 92 128 156
#>   .. ..$ minutes    : int [1:4] 1163 217 12 42
#>   .. ..$ name       : chr [1:4] "範囲外" "脂肪燃焼" "有酸素運動" "ピーク"
#>   ..$ lightlyActiveMinutes: int 186
#>   ..$ marginalCalories    : int 1825
#>   ..$ restingHeartRate    : int 58
#>   ..$ sedentaryMinutes    : int 724
#>   ..$ steps               : int 17394
#>   ..$ veryActiveMinutes   : int 114

# Get Activity Time Series
get_activity_time_series(token, "steps", date=date, period="7d")
#>     dateTime value
#> 1 2017-12-23 14310
#> 2 2017-12-24 16136
#> 3 2017-12-25 18147
#> 4 2017-12-26 10815
#> 5 2017-12-27 11003
#> 6 2017-12-28 21025
#> 7 2017-12-29 17394

# Get activity intraday time series
# You have to use a **personal** key and secret.
df <- get_activity_intraday_time_series(token, "steps", date, detail_level="15min")
df$time <- as.POSIXct(strptime(paste0(df$dateTime, " ", df$dataset_time), "%Y-%m-%d %H:%M:%S"))
ggplot2::ggplot(df, aes(x=time, y=dataset_value)) + geom_line()

# Get Activity Types (complicated nested list)
length(get_activity_types(token))
#> [1] 1

# Get Activity Type (Yoga=52001)
get_activity_type(token, 52001)
#>   accessLevel hasSpeed    id mets name
#> 1      PUBLIC    FALSE 52001  4.3 Yoga

# Get Frequent Activities
get_frequent_activities(token)
#>   activityId calories                                    description
#> 1      90013        0 Walking less than 2 mph, strolling very slowly
#> 2      90009        0                  Running - 5 mph (12 min/mile)
#> 3       1071        0                                               
#> 4      15000        0                                               
#> 5      20047        0                                               
#> 6       3001        0                                               
#>   distance duration            name
#> 1        0  1485000            Walk
#> 2        0  3789000             Run
#> 3        0  1126000    Outdoor Bike
#> 4        0  2560000           Sport
#> 5        0  2560000      Elliptical
#> 6        0  2253000 Aerobic Workout

# Get Recent Activities
get_recent_activity_types(token)
#>   activityId calories                                    description
#> 1      90009        0                  Running - 5 mph (12 min/mile)
#> 2       1071        0                                               
#> 3      90013        0 Walking less than 2 mph, strolling very slowly
#> 4      15000        0                                               
#> 5      20047        0                                               
#>   distance duration         name
#> 1        0  3789000          Run
#> 2        0  1126000 Outdoor Bike
#> 3        0  1485000         Walk
#> 4        0  2560000        Sport
#> 5        0  2560000   Elliptical

# Add, get and delete favorite activities
add_favorite_activity(token, 52001)
get_favorite_activities(token)
#>   activityId description mets name
#> 1      52001              4.3 Yoga
delete_favorite_activity(token, 52001)
get_favorite_activities(token)
#> list()

get_activity_goals(token, period="daily")
#>   activeMinutes caloriesOut distance floors  steps
#> 1            30        2790     10.3     10 100000
update_activity_goals(token, period="daily", distance=10.3)
#>   activeMinutes caloriesOut distance floors  steps
#> 1            30        2790     10.3     10 100000
get_activity_goals(token, period="daily")
#>   activeMinutes caloriesOut distance floors  steps
#> 1            30        2790     10.3     10 100000
get_activity_goals(token, period="weekly")
#>   distance floors  steps
#> 1    56.33     70 100000
update_activity_goals(token, period="weekly", steps="100000")
#>   distance floors  steps
#> 1    56.33     70 100000
get_activity_goals(token, period="weekly")
#>   distance floors  steps
#> 1    56.33     70 100000

# Get Lifetime Stats
get_lifetime_stats(token)
#>   total_distance_date total_distance_value total_floors_date
#> 1          2017-12-17             199.3834        2016-04-17
#>   total_floors_value tracker_distance_date tracker_distance_value
#> 1                 36            2017-12-17               199.3834
#>   tracker_floors_date tracker_floors_value total_activeScore
#> 1          2016-04-17                   36                -1
#>   total_caloriesOut total_distance total_floors total_steps
#> 1                -1        6869.16         4737     8876257
#>   tracker_activeScore tracker_caloriesOut tracker_distance tracker_floors
#> 1                  -1                  -1          6869.16           4737
#>   tracker_steps
#> 1       8876257

You can find more details in here

Heart Rate

# Set a date for example
date <- "2016-04-01"
# Get heart rate time series
df <- get_heart_rate_time_series(token, date=date, period="7d")
#> Warning in bind_rows_(x, .id): binding factor and character vector,
#> coercing into character vector
#> Warning in bind_rows_(x, .id): binding character and factor vector,
#> coercing into character vector
ggplot(df, aes(x=date, y=peak_max)) + geom_line()

# Get intraday heart rate time series
df <- get_heart_rate_intraday_time_series(token, date=date, detail_level="15min")
ggplot(df, aes(x=time, y=value)) + geom_line()

You can find more details here.

Sleep

# Get Sleep Logs(date is character or Date)
x <- get_sleep_logs(token, "2016-03-30")
print(head(x$sleep))
#>   awakeCount awakeDuration awakeningsCount dateOfSleep duration efficiency
#> 1          0             0              14  2016-03-30 21420000         55
#> 2          0             0              14  2016-03-30 21420000         55
#> 3          0             0              14  2016-03-30 21420000         55
#> 4          0             0              14  2016-03-30 21420000         55
#> 5          0             0              14  2016-03-30 21420000         55
#> 6          0             0              14  2016-03-30 21420000         55
#>                   endTime isMainSleep       logId minutesAfterWakeup
#> 1 2016-03-30T04:06:30.000        TRUE 11255066551                  0
#> 2 2016-03-30T04:06:30.000        TRUE 11255066551                  0
#> 3 2016-03-30T04:06:30.000        TRUE 11255066551                  0
#> 4 2016-03-30T04:06:30.000        TRUE 11255066551                  0
#> 5 2016-03-30T04:06:30.000        TRUE 11255066551                  0
#> 6 2016-03-30T04:06:30.000        TRUE 11255066551                  0
#>   minutesAsleep minutesAwake minutesToFallAsleep restlessCount
#> 1           197          160                   0            14
#> 2           197          160                   0            14
#> 3           197          160                   0            14
#> 4           197          160                   0            14
#> 5           197          160                   0            14
#> 6           197          160                   0            14
#>   restlessDuration           startTime timeInBed            dateTime value
#> 1              160 2016-03-29 22:09:30       357 2016-03-30 22:09:30     1
#> 2              160 2016-03-29 22:09:30       357 2016-03-30 22:10:30     2
#> 3              160 2016-03-29 22:09:30       357 2016-03-30 22:11:30     1
#> 4              160 2016-03-29 22:09:30       357 2016-03-30 22:12:30     1
#> 5              160 2016-03-29 22:09:30       357 2016-03-30 22:13:30     1
#> 6              160 2016-03-29 22:09:30       357 2016-03-30 22:14:30     2
x$summary
#>   totalMinutesAsleep totalSleepRecords totalTimeInBed
#> 1                197                 1            357

#Get the current sleep goal.
get_sleep_goal(token)
#>   awakeRestlessPercentage flowId recommendedSleepGoal typicalDuration
#> 1               0.5631363      0                  465             444
#>   typicalWakeupTime minDuration           updatedOn
#> 1             07:33         380 2017-12-16 10:50:32
#Update sleep goal
update_sleep_goal(token, 380)
#>   minDuration           updatedOn
#> 1         380 2018-01-02 09:24:51

#Get Sleep Time Series
get_sleep_time_series(token, "timeInBed", date="2016-04-02", period="7d")
#>     dateTime value
#> 1 2016-03-27     0
#> 2 2016-03-28     0
#> 3 2016-03-29   714
#> 4 2016-03-30   357
#> 5 2016-03-31   552
#> 6 2016-04-01   326
#> 7 2016-04-02   434
get_sleep_time_series(token, "efficiency", base_date="2016-03-30", end_date="2016-03-30")
#>     dateTime value
#> 1 2016-03-30    55

#Log sleep
log <- log_sleep(token, "22:00", 180, date="2010-04-18")
print(head(log))
#>   awakeCount awakeDuration awakeningsCount dateOfSleep duration efficiency
#> 1          0             0               0  2010-04-19 10800000        100
#> 2          0             0               0  2010-04-19 10800000        100
#> 3          0             0               0  2010-04-19 10800000        100
#> 4          0             0               0  2010-04-19 10800000        100
#> 5          0             0               0  2010-04-19 10800000        100
#> 6          0             0               0  2010-04-19 10800000        100
#>                   endTime isMainSleep       logId minuteData.dateTime
#> 1 2010-04-19T01:00:00.000       FALSE 16704153715            22:00:00
#> 2 2010-04-19T01:00:00.000       FALSE 16704153715            22:01:00
#> 3 2010-04-19T01:00:00.000       FALSE 16704153715            22:02:00
#> 4 2010-04-19T01:00:00.000       FALSE 16704153715            22:03:00
#> 5 2010-04-19T01:00:00.000       FALSE 16704153715            22:04:00
#> 6 2010-04-19T01:00:00.000       FALSE 16704153715            22:05:00
#>   minuteData.value minutesAfterWakeup minutesAsleep minutesAwake
#> 1                1                  0           180            0
#> 2                1                  0           180            0
#> 3                1                  0           180            0
#> 4                1                  0           180            0
#> 5                1                  0           180            0
#> 6                1                  0           180            0
#>   minutesToFallAsleep restlessCount restlessDuration
#> 1                   0             0                0
#> 2                   0             0                0
#> 3                   0             0                0
#> 4                   0             0                0
#> 5                   0             0                0
#> 6                   0             0                0
#>                 startTime timeInBed
#> 1 2010-04-18T22:00:00.000       180
#> 2 2010-04-18T22:00:00.000       180
#> 3 2010-04-18T22:00:00.000       180
#> 4 2010-04-18T22:00:00.000       180
#> 5 2010-04-18T22:00:00.000       180
#> 6 2010-04-18T22:00:00.000       180

#Delete sleep log
delete_sleep_log(token, log$logId)

You can find more details here.

Devices

# Get deice information you registerd
get_devices(token)
#>   battery deviceVersion features        id        lastSyncTime
#> 1  Medium       Alta HR     NULL 424040354 2017-12-31 11:22:51
#>            mac    type
#> 1 9F1F7466C3DA TRACKER
# Add alarms
tracker_id <- get_devices(token)$id[1]
add_alarm(token, tracker_id, "07:15-08:00", "MONDAY")
#>     alarmId deleted enabled recurring snoozeCount snoozeLength
#> 1 562558099   FALSE    TRUE     FALSE           3            9
#>   syncedToDevice        time    vibe weekDays
#> 1          FALSE 00:15+09:00 DEFAULT
alarm <- get_alarms(token, tracker_id)
alarm
#>     alarmId deleted enabled recurring snoozeCount snoozeLength
#> 1 471178121   FALSE   FALSE      TRUE           3            9
#> 2 562558099   FALSE    TRUE     FALSE           3            9
#>   syncedToDevice        time    vibe
#> 1           TRUE 05:03+09:00 DEFAULT
#> 2          FALSE 00:15+09:00 DEFAULT
#>                                       weekDays
#> 1 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY
#> 2
# Update the content alarm
alarm_id <- tail(alarm, 1)$alarmId
update_alarm(token, tracker_id, alarm_id, "02:15-03:00", "FRIDAY")
#>     alarmId deleted enabled recurring snoozeCount snoozeLength
#> 1 562558099   FALSE    TRUE     FALSE           9            3
#>   syncedToDevice        time    vibe weekDays
#> 1          FALSE 14:15+09:00 DEFAULT
get_alarms(token, tracker_id)
#>     alarmId deleted enabled recurring snoozeCount snoozeLength
#> 1 471178121   FALSE   FALSE      TRUE           3            9
#> 2 562558099   FALSE    TRUE     FALSE           9            3
#>   syncedToDevice        time    vibe
#> 1           TRUE 05:03+09:00 DEFAULT
#> 2          FALSE 14:15+09:00 DEFAULT
#>                                       weekDays
#> 1 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY
#> 2
# Delete alarm you registered here
delete_alarm(token, tracker_id, alarm_id)
#> Response [https://api.fitbit.com/1/user/-/devices/tracker/424040354/alarms/562558099.json]
#>   Date: 2018-01-02 09:24
#>   Status: 204
#>   Content-Type: application/json;charset=UTF-8
#> <EMPTY BODY>
get_alarms(token, tracker_id)
#>     alarmId deleted enabled recurring snoozeCount snoozeLength
#> 1 471178121   FALSE   FALSE      TRUE           3            9
#>   syncedToDevice        time    vibe
#> 1           TRUE 05:03+09:00 DEFAULT
#>                                       weekDays
#> 1 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY

You can find more details here.

Contributing

  • Fork it ( https://github.com/teramonagi/fitbitr/fork )
  • Create your feature branch (git checkout -b my-new-feature)
  • Commit your changes (git commit -am 'Add some feature')
  • Push to the branch (git push origin my-new-feature)
  • Create a new Pull Request

Acknowledgements

Many thanks to Mr.dichika since This package is based on the extension of myFitbit package.

About

Interact with Fitbit data in R using Fitbit API

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%