Unofficial Python implementation of MLDS:
"Multilinear dynamical systems for tensor time series.",
Rogers, Mark, Lei Li, and Stuart J. Russell.
Advances in Neural Information Processing Systems 26 (2013): 2634-2642.
The original implementation is found at the author's homepage
[link].
$$\mathcal{Z}_1\sim\mathcal{N}(\mathcal{U}0,\mathcal{Q}0)$$ $$\mathcal{Z}{n+1}|\mathcal{Z}{n}\sim\mathcal{N}(\mathcal{A}\otimes\mathcal{Z}_n,\mathcal{Q})$$
Then, original tensors are represented by
where,
- the initial state covariance,
$\mathcal{Q}_0$ - the transition covariance,
$\mathcal{Q}$ - the observation covariace,
$\mathcal{R}$
The shapes of these covariaces can be specified in 'full', 'diag', and 'isotropic', independently.
@article{rogers2013multilinear,
title={Multilinear dynamical systems for tensor time series},
author={Rogers, Mark and Li, Lei and Russell, Stuart J},
journal={Advances in Neural Information Processing Systems},
volume={26},
pages={2634--2642},
year={2013},
publisher={Citeseer}
}