Skip to content

Detecting face mask with OpenCV and TensorFlow. Using simple CNN or model provided by TensorFlow as MobileNetV2, VGG16, Xception.

License

Notifications You must be signed in to change notification settings

ksvbka/face-mask-detector

Repository files navigation

Face Mask Detection

GitHub PyPI - Python Version

Detecting face mask with OpenCV and TensorFlow. Using simple CNN or model provided by TensorFlow as MobileNetV2, VGG16, Xception.

Demo

Data

Raw data collected from kaggle and script crawl_image.py, split to 'Mask' and 'Non Mask' class.

Using build_data.py to extract faces from raw dataset and resize to 64x64.

Installation

Clone the repo

git clone git@github.com:ksvbka/face-mask-detector.git

cd to project folder and create virtual env

virtualenv .env
source .env/bin/activate
pip install -r requirements.txt

Download raw dataset and execute script build_dataset.py to preprare dataset for training

cd data
bash download_data.sh
cd -
python3 build_dataset.py --data-dir data/dataset_raw/ --output-dir data/64x64_dataset

Training

Execute train.py script and pass network architecture type dataset dir and epochs to it. Default network type is MobileNetV2.

python3 train.py --net-type MobileNetV2 --data-dir data/64x64_dataset --epochs 20

View tensorboard

tensorboard --logdir logs --bind_all

Testing

python3 mask_detect_image.py -m results/MobileNetV2-size-64-bs-32-lr-0.0001.h5 -i demo_image/2.jpg

Result

Hyperparameter: - batch size: 32 - Learing rate: 0.0001 - Input size: 64x64x3

Model result

Model Test Accuracy Size Params Memory consumption
CNN 87.67% 27.1MB 2,203,557 72.58 MB
VGG16 93.08% 62.4MB 288,357 18.06 MB
MobileNetV2 (fine tune) 97.33% 20.8MB 1,094,373 226.67 MB
Xception 98.33% 96.6MB 1,074,789 368.18 MB

Download pre-trained model: link

Demo

Using MobileNetV2 model

Demo Demo Demo Demo Demo Demo Demo Demo Demo

About

Detecting face mask with OpenCV and TensorFlow. Using simple CNN or model provided by TensorFlow as MobileNetV2, VGG16, Xception.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published