Skip to content

Enhancing Object Detection in using Thermal Imaging for thin cross-section unidentifiable objects(eg. cyclist, pedestrians).

Notifications You must be signed in to change notification settings

laishawadhwa/firefly

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Firefly

Enhancing Object Detection in using Thermal Imaging for thin cross-section unidentifiable objects(eg. cyclist, pedestrians).

To run the gui use the command: python StreamResults.py <path_to_video_file>

GUI DEMO:

  1. Results on RGB

  2. Results on Thermal Images

To build the package

$ cd firefly
$ make

Set GPU vars to 1 here if using GPU.

Download pre-trained weights in firefly/backup/

$ cd firefly && mkdir backup && cd backup

[thermal] [rgb]

Predict

$ cd firefly

To predict on images(thermal)

$ ./darknet detector test cfg/thermal.data cfg/yolov3-spp-custom.cfg backup/yolov3-spp-thermal.weights <img_path> -dont_show -out result.json 
# Predicted output saved as prediction.jpg

To predict on images(RGB)

$ ./darknet detector test cfg/coco.data cfg/yolov3.cfg backup/yolov3.weights <img_path> -dont_show -out result.json 
# Predicted output saved as prediction.jpg

Instead of supplying an <img_path> on the command line, you can leave it blank to try multiple images in a row. Instead you will see a prompt when the config and weights are done loading:

$ ./darknet detector test cfg/thermal.data firefly/cfg/yolov3-spp-custom.cfg backup/yolov3-spp-thermal.weights -dont_show
layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   416 x 416 x   3   ->   416 x 416 x  32  0.299 BFLOPs
    1 conv     64  3 x 3 / 2   416 x 416 x  32   ->   208 x 208 x  64  1.595 BFLOPs
    .......
  104 conv    256  3 x 3 / 1    52 x  52 x 128   ->    52 x  52 x 256  1.595 BFLOPs
  105 conv    255  1 x 1 / 1    52 x  52 x 256   ->    52 x  52 x 255  0.353 BFLOPs
  106 detection
Loading weights from yolov3-spp-thermal.weights...Done!
Enter Image Path:

To predict on videos(thermal)

$ ./darknet detector demo cfg/thermal.data cfg/yolov3-spp-custom.cfg backup/yolov3-spp-thermal.weights <video_file_path>

To predict on videos(RGB)

$ ./darknet detector demo cfg/coco.data cfg/yolov3.cfg backup/yolov3.weights <video_file_path> -out_filename <output_video_path.avi>

Using Python

from subprocess import Popen, PIPE
thermal = "./darknet detector test cfg/thermal.data cfg/yolov3-spp-custom.cfg backup/yolov3-spp-thermal.weights -dont_show"
rgb = "./darknet detector test cfg/coco.data cfg/yolov3.cfg backup/yolov3.weights -dont_show"

pthermal = Popen([thermal], shell=True, stdout=PIPE, stdin=PIPE)
prgb = Popen([rgb], shell=True, stdout=PIPE, stdin=PIPE)

img_type, img_path = raw_input("Enter image type(thermal/rgb) and image path").split(" ")
img_path = img_path + '\n'
#img_path = bytes(img_path, 'UTF-8')  # Needed in Python 3.

result = None
if img_type == "thermal":
    pthermal.stdin.write(img_path)
    pthermal.stdin.flush()
    result = pthermal.stdout.readline().strip()
if img_type == "rgb":
    prgb.stdin.write(img_path)
    prgb.stdin.flush()
    result = prgb.stdout.readline().strip()

print(result)
# Predicted output saved as prediction.jpg

Results

Results on video.

rgb thermal groundtruth

About

Enhancing Object Detection in using Thermal Imaging for thin cross-section unidentifiable objects(eg. cyclist, pedestrians).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 67.9%
  • Cuda 14.1%
  • C++ 9.9%
  • Python 4.3%
  • CMake 1.8%
  • Shell 0.8%
  • Other 1.2%